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ABSTRACT
During an earthquake, a large amount of waste was generated, and many Asbes-
tos-Containing Materials (ACM) were unintentionally destroyed. ACM is a mixture of 
cement matrix and asbestos fiber, widely used in construction materials, that causes 
serious diseases such as lung cancer, mesothelioma and asbestosis, as a conse-
quence of inhalation of the asbestos fiber. In order to reuse and recycle Post-earth-
quake Building Waste (PBW) as secondary raw material, ACM must be separately 
collected and deposited from other wastes during the recycling process. The work 
aimed to develop a non-destructive, accurate and rapid method to detect ACM and 
recognize different types of PBW to obtain the best method to correctly identify and 
separate different types of material. The proposed approach is based on Hyper-
spectral Imaging (HSI) working in the short-wave infrared range (SWIR, 1000-2500 
nm), followed by the implementation of a classification model based on hierarchical 
Partial Least Square Discriminant Analysis (hierarchical-PLS-DA). Micro-X-ray fluo-
rescence (micro-XRF) analyses were carried out on the same samples in order to 
evaluate the reliability, robustness and analytical correctness of the proposed HSI 
approach. The results showed that the applied technology is a valid solution that can 
be implemented at the industrial level.

1. INTRODUCTION
Natural disasters create huge amounts of waste (Xiao 

et al., 2017). In 2016, an earthquake hit central Italy and pro-
duced about 3 million tons of waste, still clearly visible in 
terms of destruction in the epicentral area. Post-earthquake 
Building Waste (PBW) belong to the category of Construc-
tion and Demolition Waste (CDW) are mainly composed 
of materials like concrete, glass, asphalt, wood and also 
some hazardous materials like asbestos, still present in old 
buildings built before its ban in 1975 (Tabata et al., 2022). 
Asbestos is a fibrous mineral widely used in a variety of 
building materials due to its extraordinary tensile strength 
and resistance to heat and corrosion (Gualtieri, 2017; Pagli-
etti et al., 2019). However, it causes serious diseases such 
as lung cancer, mesothelioma (Azuma et al., 2009) and 
asbestosis (EPA, 2020a). Many Asbestos-Containing Ma-
terials (ACM) are destroyed during an earthquake disaster, 
and there are risks that fine asbestos particles will spread 
in the air (Kim et al., 2015; Kim et al., 2020; Ishihara, 2012). 
In this perspective, after an earthquake, separation of ACM 
from PBW is required to remove this hazardous fraction, 

thus allowing inert fractions to be recycled and reused as 
secondary raw material (Reinhart et al., 1999; Brown et al., 
2011). Such an approach is of fundamental importance be-
cause it reduces the increase of landfilling, favoring the re-
silience of the affected areas and avoiding non-renewable 
raw materials exploitation.

PBW management is delicate asbestos-containing ma-
terials that are often not visible. The asbestos presence in 
building waste makes it dangerous for treatment, as cur-
rently, post-earthquake waste management is done manu-
ally by operators so that exposure can be harmful to their 
health. 

A system based on Hyperspectral imaging (HSI) could 
be a valuable solution for recognizing and separating haz-
ardous material from recycling products. Different studies 
have been carried out to perform asbestos fiber identifica-
tion in ACM samples using the HSI techniques (Bonifazi 
et al., 2015, 2016, 2018, 2019; Serranti et al., 2019). In this 
study, instead, an object-based recognition of ACM mate-
rials was implemented in order to develop a classification 
model able to identify this material in respect of the main 
others usually constituting a PBW product (i.e., concrete, 
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tile, brick and stone). The classification method is based on 
the application of HSI working in the short-wave infrared re-
gion (SWIR: 1000–2500 nm) and micro-X-ray fluorescence 
(micro-XRF). More in detail, the acquired HSI data were first 
examined using Principal Component Analysis (PCA), and 
then a classification method based on hierarchical Partial 
Least Squares-Discriminant analysis (PLS-DA) was applied 
to detect ACM and PBW. The chemical maps obtained by 
micro-XRF were compared with the acquired hyperspectral 
images to validate the results obtained by optical sensing. 
The obtained results are very promising and representative 
of a variety of advantages, such as being non-destructive 
and accurate. Moreover, the proposed approach could be 
implemented at a recycling plant scale in order to develop 
an online strategies for sorting, with a minor exposure risk 
for workers.

2. MATERIALS AND METHODS 
2.1 Analysed samples

The investigated samples are constituted of PBW and 
ACM fragments. The PBW samples, composed of tile, con-
crete, brick and stone coming from the collapsed building 
during the Amatrice (Italy) earthquake in 2016 and 2017, 
were collected from a stationary recycling plant (Cosmari 
Srl) located in the province of Macerata (Italy), where sort-
ing and managing post-earthquake debris is performed. 
ACM samples, composed of a cement mortar and asbes-
tos fibers mixture, were provided by National Institute for 
Insurance against Accidents at Work (INAIL) (Rome, Italy). 
Starting from these materials two sample data sets were 
built: one to calibrate and the other to validate the recog-
nition/classification procedure. In both cases, four PBW 
samples and one ACM sample were selected (Figures 1a 
and 1b).

2.2 Hyperspectral imaging
Hyperspectral images were acquired using the SISUCh-

ema XL™ Chemical Imaging Workstation (Specim, Finland), 
equipped with an ImSpector™ N25E imaging spectrograph 
(Specim, Finland) working in the short-wave infrared range 
(SWIR, 1000-2500 nm). The analytical station is controlled 
by a PC unit equipped with specialised acquisition/pre-pro-
cessing software (Chemadaq™) to handle the different 

units and the sensing device constituting the platform 
and to perform the acquisition and the collection of spec-
tra. Samples were acquired with a lens of 31 mm, and the 
spectral resolution was 6.3 nm. Spectral data were analyz-
ed using the PLS Toolbox (Eigenvector Research, Inc., WA, 
USA) under Matlab® environment (The Mathworks, Inc., 
MA, USA). 

2.3 Spectral data analysis
Hyperspectral data were pre-processed in order to 

highlight samples spectral differences and to reduce the 
impact of possible external sources of variability. Different 
combinations of the algorithm were applied, in particular:

• Smoothing (window: 21 pt): used for smoothing/noise 
reduction in order to avoid amplification of high-fre-
quency noise during the derivation process, as it hap-
pens in the case of finite-difference derivation. It is an 
algorithm based on Savitzky–Golay routine (Rinnan et 
al., 2009),

• Multiplicative Scatter Correction (MSC) (median): 
works on imperfections (e.g., undesirable scatter ef-
fect) that will be removed from the data matrix prior to 
data modeling. MSC comprises two steps: estimating 
the correction coefficients (additive and multiplicative 
contributions) and correcting the recorded spectrum 
(Rinnan et al., 2009),

• Detrend: applied on spectra to remove the effects of 
baseline shift and curvilinearity (Otto, 1999; Rinnan et 
al., 2009),

• Mean Center (MC): it calculates the mean of each col-
umn of the matrix associated with the image and sub-
tracts this from the column. It is useful for removing 
constant background contributions, which usually are 
not interesting for data variance interpretation (Rinnan 
et al., 2009).

2.4 Principal Component Analysis (PCA)
PCA was applied to explore the data, define classes 

and perform the calibration dataset. It is a valuable method 
that provides an overview of complex multivariate data. It 
was used to decompose the "processed" spectral data into 
several Principal Components (PCs), linear combinations 
of the original spectral data, embedding the spectral vari-

FIGURE 1: Digital images of the acquired samples: (a) calibration and (b) validation dataset.
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ations of each collected spectral dataset (Bro et al., 2014; 
Wold et al., 1987; Cordella et al., 2012; Jolliffe et al., 2002). 

2.5 Hierarchical PLS-DA Classification
The Partial Least Square-Discriminant Analysis (PLS-

DA) method was applied in order to build a hierarchical 
model. It is a classification method used to find a model 
able to predict the known classes in an unknown image. 
Prior knowledge of the data was required. Starting from 
known samples, a specific function was built to predict the 
new unknown object in the HSI image, made of the same 
materials as the known classes (Ballabio et al., 2013; Bark-
er et al., 2003).

The hierarchical model was used in order to prelim-
inarily divide into subsets and then subdivide them into 
further subsets of the data until each subset contains a 
single object (Monakhova et al., 2016). The hierarchical 
classification procedure was based on 4 rules developed 
for classifying the five samples. In Figure 2, the developed 
dendrogram shows the hierarchical model built to classify 
the ACM and PBW.

The classification performances obtained by a hierar-
chical PLS-DA model were evaluated in terms of statistical 
parameters: Sensitivity and Specificity:

Sensitivity =      (1)

Specificity =      (2)

More in detail, Sensitivity estimates the model's ability 
to avoid false negatives, assessing the proportion of actual 
positives correctly identified, while Specificity allows the 
estimation of the model's ability to avoid false positives, 
that is, the proportion of negatives correctly identified. The 
more these values approach to 1, the better the model is.

2.6 Micro-X-ray Fluorescence analysis
Samples were analysed by micro-XRF to evaluate the 

chemical composition and element distribution. Micro-XRF 
analysis was performed by a Bruker Tornado M4 equipped 
with an Rh tube, operating at 50 kV, 200 μA, with a 25 μm 

spot obtained with poly-capillary optics. PBW samples 
mapping was carried out adopting an acquisition time of 
10 ms/pixel and step size of 200 μm in vacuum conditions 
at 21 mBar. ACM samples mapping was performed adopt-
ing an acquisition time of 15 ms/pixel and step size of 100 
μm in vacuum conditions at 20 mBar. 

3. RESULTS AND DISCUSSION
3.1 Hyperspectral imaging

The sample's average reflectance spectra are shown 
in Figure 3. The raw spectra were preliminarily analyzed in 
order to detect and compare their characteristics. The ab-
sorption features, visible around 1400 nm and 1900 nm, are 
due to water molecules O-H stretching and H-O-H bending 
vibrations (Crowley et al., 2003). The absorptions evidenced 
in concrete spectra at 2350 nm identify calcite which is one 
of the ingredients of cement in the form of limestone and 
other forms of calcium carbonate (Goetz et al., 2009). The 
mean spectra of the ACM class show the vibrational spec-
troscopic effects in the wavelength ranges of 1380–1400 
nm, indicating the presence in the samples of asbestos 
fibers (Bonifazi et al., 2019; Krówczyńska et al., 2017). 

To improve separation between ACM and PBW mate-
rials, different pre-processing strategies were applied to 
reduce light scattering and emphasize the spectral differ-
ences, summarized in Table 1. Four different Rule were de-
veloped in order to build the classification model.

Rule 1 was adopted in order to perform a separation 
among the classes ACM+Stone+Brick and the classes 
Tile+Concrete. Rules 2 and 3 allowed for performing a two-
step classification, preliminary detection Stone and further 
ACM and Brick. Finally, applying Rule 4 improved the sepa-
ration between Tile and Concrete.

The results of the four Rules of the hierarchical PLS-DA 
classifier are presented and discussed in the following. 

• Rule 1
The results of the pre-processed spectra and the corre-
sponding PCA score are reported in Figure 4. The pre-pro-

FIGURE 2: Dendrogram showing the hierarchical PLS-DA model built to classify the five different samples of ACM, Tile, Concrete, Brick 
and Stone.
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cessing combination selected for Rule 1 was Detrend and 
MC. The PCA results indicated that most of the variance 
was captured by the first two PCs, where PC1 and PC2 ex-
plained 70.49% and 14.55% of the variance, respectively. 
The spectral data of the five samples show a high variabili-
ty due to the different types of materials. 

• Rule 2
In Figure 5, the pre-processed spectra for Rule 2 were ob-
tained through Smoothing and MC. The corresponding 
PCA indicates that most of the variance was captured by 
the first three PCs, where PC1 and PC3 explained 99.65% 
and 0.06% of the variance, respectively. As shown in the 

FIGURE 3: Average and reflectance spectra of the five classes of materials constituting the calibration dataset.

FIGURE 4: (a) Pre-processed (Detrend and MC) average reflectance spectra and (b) PCA score plot of PC1 and PC2 related to Tile+Con-
crete and ACM+Stone+Brick.

FIGURE 5: (a) Pre-processed (Smoothing and MC) average reflectance spectra and (b) PCA score plot of PC1 and PC3 related to ACM+ 
Brick and Stone.
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PCA score plot, ACM+ Brick and Stone were clustered into 
two groups.
• Rule 3
Rule 3 was developed to evaluate the spectral difference 
between ACM and Brick. In Figure 6, the results show the 
pre-processed spectra and the corresponding PCA score. 
The pre-processing selected were MSC, Detrend, Smooth-

ing and MC. PC1 and PC3 explained 50.39% and 27.53% of 
the variance, respectively, and the score plot shows a good 
separation between ACM and Brick. 
• Rule 4
Finally, Rule 4 was obtained by the combination of the 
pre-processing MSC, Detrend and MC. In Figure 7, the re-
sults of the pre-processed average reflectance spectra and 
the corresponding PCA score plot. The first three PCs cap-
tured the variance, where PC1 and PC3 explained 85.02% 
and 2.63% of the variance, respectively. The PCA score plot 
shows a good separation between Tile and Concrete.

The classification model was then applied to the vali-
dation dataset and the obtained results were reported, in 
terms of a prediction map, in Figure 8. In Table 2, the clas-
sification results of objects, derived from the pixel based 
classification, presents no error. The results show a good 
prediction, but some errors occur because of the high var-
iability and the complex morphology of the samples. The 
results, in terms of Sensitivity and Specificity in prediction 
phases, confirm the good quality of the model, with values 
ranging from 0.83 (i.e. tile) to 1.00 (i.e. brick) (Table 2). 

The results achieved by the proposed HIS based ap-
proach are in agrrement with those obtained by other au-
thors (Malinconico et al.2022, Frassy et al., 2014; Cilia et 
al., 2015).

Rule Pre-processing Classification Output

1
Detrend Tile+Concrete 

Mean Center ACM+Stone+Brick

2
Smoothing (window: 21 pt) ACM+Brick

Mean Center Stone

3

Multiplicative Scatter Correc-
tion (MSC) (median) ACM

Detrend 
Smoothing (window:15 pt) Brick

Mean Center  

4

Multiplicative Scatter Correc-
tion (MSC) (median) Tile

Detrend Concrete

Mean Center  

TABLE 1: Description of the pre-processing strategies applied to 
the spectra of the different classes for each Rule.

FIGURE 7: (a) Pre-processed (MSC, Detrend and MC) average reflectance spectra and (b) PCA score plot of PC1 and PC3 related to Tile 
and Concrete.

FIGURE 6: (a) Pre-processed (Detrend and MC) average reflectance spectra and (b) PCA score plot of PC1 and PC2 related to Tile+Con-
crete and ACM+Stone+Brick.
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3.2 Micro-X-ray Fluorescence
Micro-XRF maps were obtained on the same samples 

and compared with HSI prediction maps to evaluate their 
correctness. Micro-XRF results show differences in chem-
ical composition and distribution between ACM and PBW 
samples (Figure 9). ACM sample shows different textural 
characteristics, in comparison to the other materials, due 
to the presence of asbestos fibers, identified by the detec-
tion of Fe and Mg, inside the cement mortar matrix, charac-
terized by the presence of Ca and Al elements. 

PBW samples are characterized, in agreement with the 
results obtained by HSI, by the presence of common ele-
ments but with different distribution and concentrations. 
Stones are mainly composed of different minerals contain-
ing Fe, Si and Al. Bricks show a matrix characterized by 
low porosity, with a high presence of Si and Fe. Concrete 
is mostly composed of Ca, which is also present as a con-
taminant on the surface of tile samples.

4. CONCLUSIONS
The present study was carried out to investigate the 

combined utilization of micro-XRF and HSI techniques to 
characterize asbestos-containing materials (ACM), a mix-
ture of cement matrix and asbestos, and inert coming from 
buildings in a post-earthquake site. In order to reach this 
goal, a procedure based on the SWIR-HSI technique cou-
pled with a chemometric approach was developed and a hi-
erarchical PLS-DA model was built. Results clearly showed 
as the proposed method allowed to correctly identify ACM, 
tile, brick, concrete and stone materials in complete ac-

cordance with HSI classification results and chemical ele-
ment distributions verified by micro-XRF. 

The advantage of the HSI technique, compared with 
micro-XRF, is that it represents a fast and easy to handle 
solution for post-earthquake building waste management. 
Moreover, this approach could be particularly useful to im-
prove the detection of hazardous materials without human 
support and PBW recycling processes from post-earthquake 
sites. Future developments will be addressed to extend 
the classification to a different kind of ACM and increase 
the performance of selection at the recycling plant scale.
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