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1. INTRODUCTION
The municipal sewage treatment process does not fully 

eliminate contaminants of emerging concern (CEC) (Clarke 
and Smith, 2011; Verlicchi and Zambello, 2015) such as 
pharmaceutical and personal care products (PPCPs), hor-
mones, polybrominated diphenyl ethers, and perfuoroalkyl 
acids in biosolid residuals and wastewaters (Hernando et 
al., 2006; McLellan and Halden, 2010; Nieto et al., 2010); 
Venkatesan and Halden, 2014; Alder and van der Voet, 
2015. In many countries and more localized jurisdictions, 
land application of municipal biosolids (treated sewage 
sludge) is routinely conducted (Joshua et al., 1998; USEPA, 
1999; European Commission, 2001; Mantovi et al., 2005; 
Schut, 2005; Kelessidis and Stasinakis, 2012) as a means 
to provide nutrients and organic matter for crop growth 
and reduce disposal burdens. In Canada, the amounts of 
municipal biosolid mass that can be applied to land is of-
ten governed by heavy metal limits; limit criteria that can 

vary among provincial jurisdictions (CCME, 2010). CECs 
resulting from and application of municipal biosolids to 
agricultural field soils have been detected in groundwater 
and subsurface drainage networks (Barnes et al., 2008; La-
pen et al., 2008, Edwards et al., 2009) and in surface run-
off (Pedersen et al., 2005; Topp et al., 2008; Sabourin et al, 
2009); also many CECs have been shown to persist in soil 
(Kinney et al., 2006; Gottschall et al., 2012; 2013; 2017). 
There is also evidence of CECs being absorbed and trans-
located in plants (Boxall et al., 2006; Stahl et al., 2009; Wu 
et al., 2010; Picó et al., 2017).

This paper summarizes a suite of studies conducted in 
Ontario Canada by Agriculture and Agri-Food Canada, that 
examine CEC persistence in soil and hydrological exposure 
pathways associated with land application of municipal 
biosolids; with consideration of: biosolid type (LMB, liquid 
municipal biosolids; DMB, dewatered municipal biosolids), 
land application rates, and methods of land application.
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2. METHODS AND MATERIALS
2.1 Study sites

Table 1 documents for selected studies, the field sites 
and generalized experimental details, including type/
amount of municipal biosolids applied, land application 
methods, environmental endpoints monitored, and study 
duration. The Winchester study site consisted of six treat-
ment plots and two control plots, each 100 m in length x 
15 m in width. All plots were tile drained (artificial subsur-
face drainage). The Ottawa study site was located on an 
experimental agricultural field. The field consisted of four 
independently tile drained plots, approximately 3 ha each, 
of which only two plots were used for the experiment (one 
treatment and one control/reference). The London, Ontario 
study consisted of 25-30 plots of 2 m2. For all study sites, 

no previous biosolids applications had taken place before 
the experiments summarized here. Table 2 lists the various 
types of CECs monitored for each study with selected com-
pounds identified.

3. RESULTS AND DISCUSSION
3.1 LMB applications
3.1.1 Winchester

Selected PPCPs monitored were: triclosan (antibac-
terial), sulfapyridine, sulfamethoxazole (antimicrobials), 
cotinine (nicotine metabolite), atenolol (beta blocker), 
carbamazepine (anticonvulsant), fluoxetine (antidepres-
sant), acetaminophen, naproxen, ibuprofen (analgesics), 
gemfibrozil (lipid regulator). PPCPs moved rapidly (within 
minutes) to tile drains (~0.8m depth) following LMB ap-

Study Site Biosolid Type and 
Application Rate* Application Method(s) Environmental 

Monitoring Duration of Study References

Winchester LMB,
93,500 L ha-1

Surface apply over aerated 
(AerWay® SSD) soil vs. surface 
apply on no-till soil followed by 
incorporation (to ~0.10 m)

Subsurface drainage 
(tile)

40 days post-appli-
cation

Lapen et al., (2008); 
Gottschall et al., (2010)

Winchester
DMB,
8 Mg dry weight 
dw ha-1

Direct DMB injection (to ~0.11 m) 
using the Terratec Environ. Ltd. 
direct injection system vs. surface 
apply on no-till soil followed by 
incorporation (to ~0.10 m)

Subsurface drainage 
(tile), groundwater, soil

~6 months post-appli-
cation Edwards et al., (2009)

Ottawa DMB,
22 Mg dw ha-1

Surface apply on no-till soil 
followed by incorporation (to 
~0.10 m)

Subsurface drainage 
(tile), groundwater, soil, 
wheat grain

~1 year post-appli-
cation

Gottschall et al., (2012; 
2013, 2017)

London LMB,
93,500 L ha-1

Injection (to ~0.10 m) vs. surface 
apply followed by incorporation (to 
~0.15 m)

Surface runoff ~9 months post-appli-
cation Topp et al., (2008)

London DMB,
8 Mg dw ha-1

Surface apply on no-till soil 
followed by incorporation (to 
~0.15 m)

Surface runoff ~1 month post-appli-
cation Sabourin et al., (2009)

*LMB = liquid municipal biosolids, DMB = dewatered municipal biosolids

TABLE 1: Summary of selected municipal biosolid CEC studies. All municipal biosolids that were surface applied, with the exception of the 
AerWay® approach, were subjected to soil incorporation via light tillage implement within 24hrs post application.

Contaminant Class CEC Measurement Targets Study Sites; References

Polybrominated 
Diphenyl Ethers 
(PBDEs)/Other 
Brominated
Flame retardants 
(BFRs)

BDE-47
BDE -99
BDE-153
BDE-154
BDE-183
BDE-209
Decabromodiphenyl ethane (DBDPE)
1,2-Bis(2,4,6-tribromophenoxy)ethane (BTBPE)

Subsurface drainage (tile), 
groundwater, soil, biosolid resi-
dues, wheat grain

Winchester, Ottawa; Gottschall et al., 
(2010; 2017)

Perfluoroalkyl 
Acids (PFAAs)

Perfluorooctanoic acid (PFOA)
Perfluorooctane sulfonate (PFOS)

Subsurface drainage (tile), 
groundwater, soil, biosolid resi-
dues, wheat grain

Winchester, Ottawa; Gottschall et al., 
(2010; 2017)

Hormones and
Fecal Sterols

Estrone
Testosterone Desogestrel
Androsterone Progesterone Coprostanol
Cholesterol
Cholestanol

Subsurface drainage (tile), 
groundwater,soil, biosolid resi-
dues, wheat grain

Ottawa; Gottschall et al., (2013)

PPCPs:
Antidepressants
Analgesics
Lipid regulators
Antimicrobials
Beta blockers

Fluoxetine
Ibuprofen
Gemfibrozil
Sulfamethoxazole
Atenolol

Subsurface drainage (tile), ground-
water, soil, biosolid residues,
wheat grain

Winchester, Ottawa, London; Lapen 
et al., 2008); Gottschall et al., (2012); 
Topp et al. (2008); Sabourin et al., 
( 2009)

TABLE 2: Selected CEC (classes) and measurement targets.
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plication, with surface spreading of LMB resulting in sig-
nificantly higher (p<0.05) tile loads of PPCPs than surface 
spreading of LMB immediately preceded by aeration-based 
tillage. Maximum concentrations of PPCPs were detected 
exclusively where LMB was surface spread over no-till 
soil, ranging from 267 ng L-1 for atenolol, to 4117 ng L-1 
for ibuprofen; sulfapyridine was only detected once above 
limits of quantitation (22.4 ng L-1, at a surface spread over 
no-till plot). By aerating the soil using the AerWay® SSD 
system, application induced loads of PPCPs to tile drains 
via soil preferential flow paths (macropores) were critical-
ly reduced. For some of the more persistent PPCPs, there 
may be more parity in loading among the two land applica-
tion methods over the longer term. But high concentration 
PPCP pulses during and immediately following land appli-
cation were clearly dampened by the soil aeration meth-
ods deployed in the study. Figure 1 shows mass export of 
selected PPCPs.

Major polybrominated diphenyl ethers (PBDEs) mon-
itored for this experiment were: BDE-47, -99, -153, -154, 
-183, and -209; Perfluoroalkyl acids (PFAAs) monitored 
included perfluorooctane sulfonate (PFOS) and perfluo-
rooctanoic acid (PFOA). These compounds have human 
and environmental health implications (Thibodeaux et al., 
2003; Costa and Giordano, 2007). Maximum concentra-
tions in tile drainage ranged from 6-320 ng L-1 following 
LMB application, and all maximum values, like the PPCPs, 
were observed for the surface spread over no-tilled plots. 
Mass loads for PBDEs were significantly higher (p<0.05) 
for surface spreading vs. control/reference plots (where 
no amendment was applied), but there were no significant 
analyte load differences between surface spreading (over 
no-till) and aeration tilled plots. For PFAAs, only PFOS and 
PFOA were found above detectable limits in subsurface 
tile drainage, with maximum concentrations of 17 and 12 
ng L-1, respectively, on a surface spread and aeration plot, 
respectively.

3.1.2 London
The selected PPCP compounds monitored were: ateno-

lol, carbamazepine, cotinine, gemfibrozil, naproxen, ibupro-
fen, acetaminophen, sulfamethoxazole and triclosan. Sur-
face runoff (generated by rainfall simulator) for plots where 
LMB was injected (~0.1 m depth in soil), rarely had con-
centrations of PPCPs above limits of quantitation, while 
runoff from the surface spread plots ranged from 70-1477 
ng L-1 (atenolol (70), carbamazepine (221), cotinine (83), 
gemfibrozil (597), acetaminophen (114), ibuprofen(1477), 
naproxen (509), triclosan (258)) 1 day post-application, 
generally declining thereafter following first order kinet-
ics, with K (d-1) values ranging from 0.023 for triclosan to 
0.346 for sulfamethoxazole. Carbamazepine and triclosan 
were still detected from runoff events 266 days post-ap-
plication. Results show that injection of biosolids prevents 
surface runoff of PPCPs, and that concentrations of select-
ed compounds in runoff from surface applied amendment 
(followed by ‘soil incorporation’) could produce concentra-
tions in toxicologically important ranges; notwithstanding 
cumulative inputs to downstream receptors. However, in 
terms of reducing inputs to subsurface drainage, injection 

into discrete furrows may augment loads of contaminants 
to subsurface tile drains in relation to application to sur-
face application on tilled soil (Akhand et al., 2008). Figure 1 
shows mass export of selected PPCPs.

3.2 DMB applications 
3.2.1 Winchester

PPCPs monitored that were selected for discussion 
herein included: acetaminophen, fluoxetine, ibuprofen, 
gemfibrozil, naproxen, carbamazepine, atenolol, sulfame-
thoxazole, cotinine, triclosan, and triclocarban. There were 
no significant differences (p>0.05) in PPCPs loads in tile 
drainage among surface spread and directly injected DMB 
(0.05 m diam. injected continuously to a depth of ~ 0.11 m 
in soil) plots, although late study period (>100 days post-ap-
plication) average loads were consistently higher from tiles 
of injected plots, but they were not different significantly 
(p>0.05). This was likely due to PPCPs in the injected DMB 
being more protected from photodegradation, higher soil 
temperatures, oxygen, and the more biologically active sur-
face soils than the surface spread DMB which was more 
exposed to environmental elements and microorganisms 
in the surface soils. Hence, there may have been more per-
sistence in PPCPs in the injected biosolids, in relation to 
those in biosolids spread on surface and lightly incorporat-
ed into soil. Maximum PPCP concentrations in subsurface 
tile drainage did not exceed many literature based aquatic 
toxicity thresholds except for one triclosan tile water sam-
ple from the surface spread plot. Surface spreading and 
direct injection of DMB resulted in lower concentrations 
of PPCPs in subsurface drainage than application of LMB, 
although PPCPs appeared to be more persistent in soil, es-
pecially for directly injected materials. However, by directly 
injecting DMB, problems associated with vector attraction 
and odour are minimized; without, as we have shown, in-
creased liability of transport to subusurface hydrological 
receptors. Figure 1 shows mass export of selected PPCPs.

3.2.2 London
Selected compounds monitored were atenolol, carba-

mazepine, cotinine, caffeine, gemfibrozil, naproxen, ibu-
profen, acetaminophen, sulfamethoxazole, triclosan and 
triclocarban. Maximum concentrations in surface runoff 
generated by rainfall simulator ranged from undetectable 
(gemfibrozil) to 110 ng L-1 (triclosan), and time to reach 
maximum concentration varied from 1 to 36 days post-ap-
plication. The compounds with the least mass exported 
(<1% of that applied) had log Kow (octanol-water partition 
coefficient) values of ≥3.18 (triclocarban, triclosan, sulfa-
methoxazole, ibuprofen, naproxen and gemfibrozil), while 
those with >1% mass exported had log Kow values of ≤2.45 
(acetaminophen, carbamazepine, caffeine, cotinine, ateno-
lol), indicating log Kow may be a factor in determining runoff 
potential of these PPCPs. Figure 1 shows mass export of 
selected PPCPs.

3.2.3 Ottawa
The biosolids applied to the Ottawa site represented 

high instantaneous surface application rates of 22 Mg dw 
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ha-1. Hormones (androsterone, desogestrel, estrone) were 
only detected on two occasions, up to ~2 months post-ap-
plication in tile drainage (2-34 ng L-1), but were not detect-
ed in groundwater (2 m depth). Sterols were detected up 
to ~1 yr post-application in tile drainage and sterol ratios 
were indicative of biosolid-borne contamination. The lim-
ited transport of hormones and sterols to subsurface tile 

drainage networks may be attributed to a combination of 
the hydrophobicity of these compounds and more limited 
macroporosity of the field soil (in relation to the Winchester 
study soils). The transitory contamination from hormones 
and sterols appears unlikely to result in any significant 
pulse exposure risk in subsurface drainage and groundwa-
ter, even at the high application rates examined.

London LMB and DMB
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Over 80 PPCPs were monitored, but only carbamaze-
pine, ibuprofen, acetaminophen, triclosan, triclocarban, 
venlafaxine, and citalopram were detected in subsurface 
drainage (with concentrations ranging from 5–74 ng L-1). 
No PPCPs were detected in groundwater >2m and those 
detected at 2m depth (ibuprofen, triclosan, triclocarban, 
venlafaxine) were only detected on one occasion within 
one month after DMB application. PPCPs persisted in DMB 
aggregates (intact DMB within the soil) up to ~1 yr post-ap-
plication, however (Figure 1). But these persistent PPCPs 
were not critically detected in subsurface tile drainage and 
groundwater receptors. No PPCP was detected in wheat 
(grain) grown following land application. 

PBDEs, other BFRs, and PFAAs were detected in sub-
surface drainage and 2m groundwater for up to ~1 yr 
post-application. Several compounds in subsurface drain-
age were detected at significantly higher (p<0.05) concen-
trations than reference plot (no DMB applied)/pre-applica-
tion (DMB plot) concentrations (BDE-47, -100, and -153). 
PBDEs and PFAAs persisted up to ~1 yr post-application 
in DMB aggregates within the soil as well. Several PBDEs 
in DMB aggregates had concentration reductions >90% 
after 1 yr post-application, following an exponential decay 
pattern (Figure 1). No PBDEs or other BFRs were found in 
wheat grain. Although a considerable PBDE and PFAA load 
was applied at time of biosolid application (22 Mg dw ha-

1), only subsurface drainage showed significant increases 
of PBDEs relative to pre-application levels, and detection 
of PBDEs and PFAAs in subsurface drainage, groundwater, 
and soil indicated that atmospheric deposition was like-
ly an important source of these compounds. In addition, 
post-application levels of PBDEs and PFAAs in the soil re-
mained largely within background soil levels derived from 
the literature.

4. CONCLUSIONS
Transport of CECs from biosolids (liquid and solid) 

was tempered by limited macroporosity of soil, as well 
as application techniques that disrupted preferential flow 
paths to subsurface water resource receptors. Pre-tillage 
is crucial in this regard, and in cases where transport to 
subsurface drainage was rapid, as with the LMB applica-
tion at Winchester, CEC concentrations peaked only briefly, 
and rarely exceeded concentrations typical of effluents as-
sociated with many waste water treatment plants. Further, 
although many CECs were detected in soil and water for ex-
tended periods following, in particular, dewatered biosolid 
applications, concentrations did not typically exceed many 
documented acute or chronic toxicity thresholds, and com-
pounds were shown to dissipate considerably over time (i.e 
PBDEs, PPCPs). Nevertheless, cumulative effects and im-
pacts of transformation products and metabolites needs 
better experimental documentation (Mompelat et al., 
2009) in regard to the fate and transport pathways asso-
ciated with land applied biosolids. Further, the implication 
of nonextractable residues on dissipation kinetics (Boxall 
et al., 2012) needs to be more succinctly examined, since 
dissipation could be very strongly linked to, among many 
things, the nature and mode of land application method.
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