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1.	 INTRODUCTION

PCB are an essential part of all technological devices 
commonly utilized by consumers. The development of 
technology and society, as well as the higher performance 
of the electronic devices, and the corresponding minia-
turization, produce, as a consequence, an increase of the 
waste electrical and electronic equipment (WEEE) to be 
disposed of (Zhou et al., 2010). Precious and rare earth 
elements are around us, not only in nature but in our every-
day lives (i.e. car, computer, smartphone, energy-efficient 
fluorescent lamp, and color TV, as well as in lasers, lenses, 
ceramics and in many other products). We need rare earths 
for so many applications, but their supply is restricted to 
few mining districts in the world, this fact led these ele-
ments to create a critical-metals agenda. (Chakhmouradi-
an et al., 2012). To face this crucial situation, the European 
Commission in 2008, through the “European Raw Materi-
als Initiative” (European Commission, 2008) suggested a 
combined strategy based on enforcing deeper links and 
co-operation contracts with producer countries (by im-
proving foreign investment agreements), encouraging and 
promoting internal mining potential and developing more 
efficient recycling policies (Massari et al., 2013; Tiess et 
al., 2010). An ad-hoc working group of the European Union 

has determined a set of critical resources as: Be, Co, Ga, 
Ge, In, Mg, Nb, Ta and W, the platinum group metals (PGM): 
Pt, Pd, Rh, Ru, Os, Ir) and rare earth elements (REE) (Europe-
an Commission, 2010). Starting from these premises the 
possibility to utilize specific EOL products as secondary 
raw materials sources, the recovery of precious and rare 
earth elements, practically “became a must”. The concept 
of “urban mining”, referred to the different EOL materials 
and/or manufactured products of human origin, was thus 
introduced: precious and rare earth elements in dismissed 
electronic units of large use as mobile phones, “tablets” 
and personal computers, thus representing an important 
secondary raw materials source (Hagelüken et al., 2010; 
Palmieri et al., 2014). 

The most commonly applied techniques for deter-
mination of rare earth elements are inductively coupled 
plasma–optical emission spectrometry (ICP-OES), in-
ductively coupled plasma mass spectrometry (ICP-MS), 
X-ray fluorescence (XRF) and neutron activation analysis 
(NAA) (Zawisza et al., 2011). ICP-MS and ICP-OES require 
a preliminary strong manipulation of the samples in order 
to separate the rare earth element from the matrix. This 
approach is complex, time-consuming, and can always be 
a potential source of random, or even systematic, errors. 
The NAA technique has been increasingly utilized to de-
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tect the presence of rare earth elements in solid samples. 
Sometimes, NAA presents practical implementation prob-
lems mainly due to interference and the required long radi-
ation time (Kumar et al., 2014). Recently also laser-induced 
breakdown spectroscopy (LIBS) techniques (Carvalho et 
al., 2015) have been successfully applied to determine 
rare earth elements. The XRF technique offers the possi-
bility to determine rare earth elements in solid materials 
not requiring, as for LIBS, any specific sample preparation; 
it also allows simultaneous determination of both trace 
and main components (Zhang et al., 2007; De Vito et al., 
2007; Smoliński et al., 2016). However, to obtain a correct 
quantification of the detected elements it is necessary to 
consider matrix effects (absorption and enhancement) and 
peaks overlapping. Theoretically, the intensity of a peak is 
linearly proportional to the concentration of the analyte, but 
practically the intensity of a peak does not depend only on 
the concentration of the respective elements, but it is also 
determined by presence and concentrations of other ele-
ments and by the interaction with matrix (Smoliński et al., 
2016).

The new generation of scanning XRF analytical units, 
based on confocal XRF method, realizes the best acqui-
sition conditions, both in terms of speed and analytical 
data set reliability. For every acquired hyper-map, a XRF 
spectrum is associated to each pixel. Thus, an acquisition 
consists in a n × m matrix of spectra, where n and m are 
the number of pixels in the x and y direction, respective-
ly. Analyzing every spectrum associated to each pixel, it is 
possible to know the total counts corresponding to a giv-
en energy. By selecting the energy ranges depicted in the 
spectrum, it is possible to obtain a 2D image correspond-
ing to the distribution of selected elements (Figueroa et al., 
2014).

Aim of this work is to verify the possibility to utilize the 
confocal µXRF imaging based approach as an analytical 
technique to perform an automatic detection and map-
ping of the elements present in dismissed iPhone PCB 
and/or in the products (i.e. particles) resulting from their 
mechanical-physical processing before the final chemical 
recovery (i.e. leaching). Following this approach, it is thus 
not necessary the presence of an operator performing a 
preliminary identification/selection of the different ener-
gy ranges/peaks representative of a specific element. To 
reach this goal, data were analyzed by chemometric tech-
niques (exploration and classification methods) and the re-
sults compared with the maps of the elements obtainable 
by the classical approach, that is the manual selection of 
the energy ranges associated to each pixel. This approach 
could be successfully applied to perform quality control ac-
tions referred to other WEEE and resulting milled/classified 
products for precious and rare earth elements chemical 
recovery.

2.	 MATERIALS AND METHODS
2.1	Samples and experimental set up

The reference PCB samples utilized for the analysis are 
constituted by 3 electronic boards belonging to 3 different 
iPhone models (i.e. iPhone 4, iPhone 3s and iPhone 4s) 

(Figure 1). Investigations have been carried out with ref-
erence to 8 elements (palladium, silver, gold, zinc, copper, 
tantalum, lead and iron), being among those of higher in-
terest in terms of recovery and/or interfering actions, when 
XRF analyses are performed.

Precious and rare earth elements are in a small concen-
tration on each electronic board, however the preliminary 
correct identification, and further separation, when applied 
on large quantities, allow the process to be economically 
valid (Bonifazi et al., 2017).

The µXRF based elements mapping was performed at 
Raw-Ma Lab (Raw materials Laboratory) of the Department 
of Chemical Engineering, Materials & Environment (Sapien-
za - University of Rome, Italy) using a benchtop spectrom-
eter (M4 Tornado, Bruker®) equipped with a Rh X-ray tube 
with poly-capillary optics as the X-ray convergence tech-
nique, and XFlash® detector providing an energy resolution 
better than 145 eV and 5 filters (Guerra et al., 2013).

The whole spectra comprised 4096 channels with a 
spot size of approximately 30 µm. Spectrum energy cali-
bration was daily performed before each analysis batch by 
using zirconium (Zr) metal (Bruker® calibration standard). 
The sensitivity of μXRF is determined by the excitation 
probability of the sample and the peak to background ra-
tio. The background intensities were directly computed by 
the equipment (ESPRIT Bruker® software). The sample 
chamber can be evacuated to 20 mbar and, therefore, light 
elements such as sodium can be measured (Nikonow et 
al., 2016). Constant exciting energies of 50 kV and 500 μA, 
were adopted for acquisition. The set up mapping acquisi-
tion parameters were a pixel size of 80 μm and an acqui-
sition time, for each pixel, of 6 milliseconds. Spectral data 
(i.e. hyper-maps) analysis was carried out adopting chemo-
metric methods, using the PLS_Toolbox (version 8.2.1, Ei-
genvector Research, Inc.) running inside MATLAB (version 
9.1.0, The Mathworks, Inc.).

2.2	µXRF: acquisition and data handling 
The experimental procedure was defined and imple-

mented in two steps: the 1st one finalized to the acquisi-

FIGURE 1: Digital image representing the electronic 3 acquired 
boards (a) and an example of one of the region of interest (ROI) 
selected to set up the best filtering/acquisition conditions (b).

(a)

(b)
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tion of the hyper-maps and the further XRF peaks decon-
volution and the 2nd one addressed to the acquisition of 
the calibration standards and to the classification of the 
different elements detected in the electronic boards.

2.2.1	Step 1: hyper-maps acquisition and XRF peak decon-
volution

Smartphone electronics boards (Figure 1a) were ac-
quired by µXRF in order to build hyper-maps of all the el-
ements. Small regions of interest (ROI) (Figure 1b) of the 
electronics boards were selected and acquired utilizing dif-
ferent filters in order to set up the best conditions to reduce 
the signal of light elements (i.e. silicon) maximizing, at the 
same time, the signal of precious and rare earth elements 
(Gallardo et al., 2016). One of the main strategies to apply 
in order to improve measurement conditions for elements 
of interest is, in fact, the utilization of primary beam filters, 
aluminum made, that are placed between the X-ray source 
and the sample. In the Bruker M4 Tornado μXRF device, five 
internal filters are available (Al 12.5 μm, Al 100 μm, Al 630 
μm, Al/Ti 100/25 μm and Al/Ti/Cu 100/50/25 μm).

2.2.2	Step 2: acquisition of calibration standards and iden-
tification of elements by Partial Least Squared Discriminant 
Analysis (PLS-DA)

Calibration standard were acquired by µXRF to build 
a classification model able to recognize the different ele-
ments without any human based investigation finalized to 
optimal mapping set up to enhance the presence of pre-
cious metals and rare earths. A set of 8 elements clearly 
identified in the dataset as palladium, silver, gold, zinc, cop-
per, tantalum, lead and iron was used as training dataset to 
build the classification model (Figure 2). The classification 
model was then validated utilizing the electronic boards 
dataset generated by the experimental approach described 

FIGURE 2: Digital image representing the acquired standard cali-
bration elements: a: palladium, b: silver, c: gold, d: zinc, e: copper, f: 
tantalum, g: lead and h: iron.   

in Step 1.
Spectral data analysis was preliminary addressed to 

explore and to evaluate the quality of the acquired informa-
tion to be utilized for the further classification model defi-
nition, design, implementation and set up. To reach these 
goals, a preliminary Principal Component Analysis (PCA) 
and a further Partial Least Squares Discriminant Analysis 
(PLS-DA) were carried out.

PCA is the most utilized multivariate data analysis 
method for exploratory data handling, outlier detection, 
rank (dimensionality) reduction, graphical clustering, clas-
sification, regression, etc. (Bro et al., 2014). It was used to 
decompose the “pre-processed” spectral data into several 
principal components (PCs) (linear combinations of the 
original spectral data) embedding the spectral variations 
of each collected spectral data set. According to this ap-
proach, a reduced set of factors is produced and used for 
discrimination since it provides an accurate description of 
the entire dataset. The first few PCs, resulting from PCA, are 
generally utilized to analyze the common features among 
samples and their grouping: samples characterized by sim-
ilar spectral signatures tend to aggregate in the score plot 
of the first two or three components. Spectra could be thus 
characterized either by the reflectance at each wavenum-
ber in the wavenumber space, or by their score on each 
PC in the PC space (Bro et al., 2014). Samples character-
ized by similar spectra, belonging to the same class of 
products, are grouped in the same region of the score plot 
related to the first two or three PCs, whereas samples char-
acterized by different spectral features will be clustered in 
other parts of this space.

PLS-DA was used to find a model able to perform an 
optimal discrimination among classes of samples and to 
predict new images. PLS-DA is a supervised classification 
technique, requiring a prior knowledge of the data (Ballabio 
et al., 2013). PLS-DA is used to classify samples into pre-
defined groups by forming discriminant functions from 
input variables (KeV) to yield a new set of transformed 
values providing a more accurate discrimination than any 
single variable. A discriminant function is then built using 
samples with known groups to be employed later to clas-
sify samples with unknown group set. Therefore, once the 
model is obtained, it can be applied to an entire hypercube 
and for the classification of new hypercubes. The result of 
PLS-DA, applied to the hyperspectral images, is a “predic-
tion map,” where the class of each pixel can be identified 
using color mapping.

3.	 RESULTS AND DISCUSSION
Results and discussion are reported in the following, 

presenting and comparing the classical human based 
µXRF mapping approach and the proposed one based on 
PLS-DA classification.

3.1	Step 1: acquisition of hypermaps and deconvo-
lution of XRF peaks

The “preliminary” hyper-maps acquisition of the select-
ed ROIs was carried out adopting two different aluminum 
filters (Al100 and Al630), whose aim is mainly to reduce 
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FIGURE 3: Hyper-maps of the elements detected by µXRF without filtering (a) and utilizing a Al100 (b) and a Al630 (c) filters, respectively. 
Detail of the distribution of gold and silicon without filtering (d) and utilizing a Al100 (e) and a Al630 (f) filters.  

(a) (b) (c)

(d) (e) (f)

the signal due to Si and Ba presence, thus allowing bet-
ter heavy metals display, and the results were compared 
with those obtained with the acquisition without filter. An 
example is reported in Figure 3. The map of the elements, 
referred to the ROI, clearly shows as the detection of gold 
and of the other heavy elements is negatively affected by 
the presence of silicon and barium, present on electronic 
board surface.

The same ROI acquired with the Al100 filter shows a 
better “visualization” of gold and other heavy elements. 
The “noise effect” related to silicon and barium is reduced. 
Finally, the acquisition with Al630 filter shows the same 
gold distribution as that obtained using the Al100 filter, 
producing a stronger reduction of the signal associated 
to all the lighter elements (i.e. lower atomic number than 
barium). It was thus chosen to perform the acquisition of 
the hyper-maps, for all the boards, utilizing the Al100 filter. 
Following this strategy it was thus possible to obtain a bet-
ter detection of precious and rare earth elements, reduc-
ing, at the same time, the negative effects of the signal of 
all those elements not of interest for this study, as silicon 
(Figure 4).

3.2	Step 2: Acquisition of calibration standards and 
identification of elements by PLS-DA

Calibration standards were acquired adopting the same 
experimental conditions utilized to perform the electronic 
boards hyper-mapping (Figure 5). Starting from the ac-
quired raw data of the different calibration elements, cur-
rently utilized as standards (i.e. palladium, silver, gold, zinc, 
copper, tantalum, lead and iron), reference energy spectra 
have been selected. 

The reference energy spectra associated to each ele-
ment show different signatures (Figure 6a). Each energy 
spectra is characterized by several peaks according to the 
emission of a photon quantum (fluorescence radiation), 
related to the energy difference between the inner and out-
er shell. To emphasize the spectral characteristics of all 
the elements, “only” the mean spectra between 0 and 20 
KeV, have been considered, processed and mean centered 
(Figure 6b), before the application of PCA. The PCA score 
plot allows identifying eight distinct groups according their 
spectral signature. 

The 3D score plot (PC1-PC4-PC6) reported in Figure 
7a shows a good separation (i.e. distinction) of all the el-
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Element Series  [Norm.wt. %]

Silicon K-series 49.56

Copper K-series 21.42

Nickel K-series 7.71

Iron K-series 6.60

Zinc K-series 3.09

Chromium K-series 2.90

Barium L-series 2.86

Tin L-series 2.56

Calcium K-series 0.92

Titanium K-series 0.77

Tantalum L-series 0.38

Palladium K-series 0.33

Silver K-series 0.27

Gold L-series 0.27

Strontium K-series 0.14

Aluminium K-series 0.14

Yttrium K-series 0.04

Lead L-series 0.03

Bismuth L-series 0.02

Sum: 100FIGURE 4: Hyper-map of all elements detected by µXRF (a) and 
associated average concentration of the different elements as de-
tected by acquisition (b).  

(a)

(b)

FIGURE 5: Elements hyper-maps of the calibration standards.

ements, as well as a high uniformity for each class. The 
loadings of PC1, PC4 and PC6 (Figure 7b) show, in the re-
gion between 3 KeV and 15 KeV, the high variance of data, 
as a consequence 7 principal components are necessary 
to explain the variation of the calibration.

The selected energy spectra have been thus adopted 
as training dataset and a PLS-DA model was built. The ob-
tained values of Sensitivity and Specificity are shown in 
Table 1.

The Sensitivity estimates the model ability to avoid 
false negatives (i.e. number of samples of a given type cor-
rectly classified as that type).

The Specificity estimates the model ability to avoid 
false positives (the number of samples not of a given type 
correctly classified as not of that type). 

Sensitivity and Specificity can be assumed as model 
efficiency indicators: the more the values are close to one, 
the better the modelling is. In this study, the obtained val-
ues for Sensitivity and Specificity are very good. To verify 
its classification ability, the built PLS-DA model was ap-
plied to the electronic boards data set.

The results in terms of prediction (i.e. “Pred Probabil-
ity”) are shown in Figures 8-15: the class with the highest 
probability to belong to the chemical element, object of the 
detection/recognition, is assigned to each pixel in the im-
age. The obtained results are very good for all the inves-
tigated elements, being comparable with those obtained 
following the classical “instrument-men-driven” approach. 
Misclassifications sometimes occur, but they are mainly 
due to the border effect or to the co-existence of several 
elements in the same pixel. 

The element map of palladium (Pd) shows a low con-
centration but a wide distribution with a greater presence 
on micro-processors and electronic components accord-
ing to their large utilization in electronic industry (Figure 
8a). The prediction shows in the same area, mapped by 
µXRF, the presence of palladium confirming the good qual-
ity of the PLS-DA based modelling (Figure 8b).

The element map of gold (Au) shows a greater concen-
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FIGURE 6: Raw (a) and pre-processed spectra (b), as resulting from the sequential application of the functions: Normalize (1-Norm, Area = 
1), Baseline, Smoothing (order: 0, window: 5 pt, incl only, tails: polyinterp), 1st Derivative (order: 2, window: 7 pt, incl only, tails: polyinterp) 
and  Mean Center.

(b)(a)

a

FIGURE 7: 3D PCA score plot (PC1-PC4-PC6) referred to the different investigated elements (a) and corresponding plot of the loadings (b).

(a) (b)

tration of this element both with reference to component 
connector regions and also inside some components. In 
this latter case, detection is commonly realized when high-
er energies are utilized. The inner detection is also affected 
by the materials embedding gold elements (Figure 9a). The 
prediction map shows in the same area, mapped by µXRF, 
the presence of gold with a low error in classification relat-
ed to its large presence (Figure 9b).

Silver (Ag) mapping shows a low concentration of this 
element, but a large distribution on electronic boards, as a 
consequence the signal is difficult to separate from back-
ground and border effects are significant (Figure 10a). The 
prediction map of silver shows the same characteristics, 
as detected by classical µXRF analysis. Silver topological 
assessment on the board is difficult to quantify, however, 
some electronic components show, in prediction, greater 
concentration (Figure 10b), if compared with the classical 
µXRF analysis.

The element map of zinc (Zn) clearly allows to identify 
the presence of this element both in the electronic com-
ponents and in the protection structures (Figure 11a). The 
prediction maps show the presence of zinc in the same 
areas confirming the good discrimination and prediction 
power of the PLS-DA model (Figure 11b).

The element map of copper (Cu) shows a large con-
centration and distribution according to the high use of 
this material inside the electronic component (i.e. printed 
circuit tracks) (Figure 12a) The prediction maps show the 
same large distribution of copper to its topological assess-
ment as resulting from classical µXRF maps (Figure 12b).

The element map of tantalum (Ta) shows its presence 
only in some electronic component. The total concentra-
tion of tantalum on electronic board is very low. Its prima-
ry peak (La=8.146 KeV) overlaps copper peak (Ka=8.046 
KeV), therefore to perform tantalum mapping the second-
ary peak (Lb=9.343 KeV) was selected because it is not in-
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Modeled Class: 1 Pd Ag Au Zn Cu Ta Pb Fe

Sensitivity (Cal): 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Specificity (Cal): 1.000 0,984 1.000 1.000 1.000 1.000 1.000 1.000

Sensitivity (CV): 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Specificity (CV): 0.990 0.997 1.000 1.000 1.000 1.000 1.000 0.997

Class. Err (Cal): 0 0.008 0 0 0 0 0 0

Class. Err (CV): 0.005 0.002 0.012 0 0 0 0 0.161

Cal: Calibration - CV: Cross validation

TABLE 1: Sensitivity and Specificity for the PLS-DA built model.

FIGURE 8: µXRF map of palladium (Pd) element following the classical analytical approach (a)  and the PLS-DA pre-
diction modelling (b).

Maps of Elements – Pd Image of Class Pred Probability – Pd

(a) (b)

(b)(a)
FIGURE 9: µXRF map of gold (Au) element following the classical analytical approach (a)  and the PLS-DA prediction 
modelling (b).

Maps of Elements – Au Image of Class Pred Probability – Au

fluenced by the presence, around the same KeV, of peaks 
representative of other elements (Figure 8a). The predic-
tion of tantalum shows a correct identification according to 
classical element mapping results. Only in one electronic 
component its presence was not predicted by modelling, 
the reason is probably related of the high presence of oth-

er elements (i.e. zinc, gold), generating a different spectral 
shape compared to the reference one obtained by the tan-
talum reference calibration dataset (Figure 8b).

The element map of lead (Pb) shows its presence in 
some circuit components. The total concentration of lead 
results very low (Figure 14a). The lead prediction map 
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Maps of Elements – Ag Image of Class Pred Probability – Ag

(a) (b)
FIGURE 10: µXRF  map of silver (Ag) element following the classical analytical approach (a) and the PLS-DA prediction 
modelling (b).

(a) (b)

Maps of Elements – Zn Image of Class Pred Probability – Zn

FIGURE 11: µXRF map of zinc (Zn) element following the classical analytical approach (a) and the PLS-DA prediction 
modelling (b).

(a) (b)
FIGURE 12: µXRF map of copper (Cu) element (a) following the classical analytical approach and as resulting from 
the PLS-DA prediction 

Maps of Elements – Cu Image of Class Pred Probability – Cu
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(a) (b)
FIGURE 13: µXRF map of tantalum (Ta) element following the classical analytical approach (a) and the PLS-DA predic-
tion modelling (b).

Maps of Elements – Ta Image of Class Pred Probability – Ta

(a) (b)
FIGURE 14: µXRF map of lead (Pb) element following the classical analytical approach (a) and the PLS-DA prediction 
modelling (b).

Maps of Elements – Pb Image of Class Pred Probability – Pb

(a) (b)
FIGURE 15: µXRF map of iron (Fe) element following the classical analytical approach (a) and the PLS-DA prediction 
modelling (b).

Maps of Elements – Fe Image of Class Pred Probability – Fe
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shows a correct identification in the electronic component 
characterized by a high lead presence. Its recognition is dif-
ficult in all those components of smaller dimensions, prob-
ably for the presence of other elements (i.e. Bismuth (La 
10.839 KeV) whose peaks produce a masking effect (i.e. 
Pb La 10.551 KeV). (Figure 14b).

The map of iron (Fe) shows a high concentration of this 
element on card and security holders (Figure 15a). The pre-
diction map, as resulting from PLS-DA modelling, produces 
its correct identification (Figure 15b).

4.	 CONCLUSIONS
The study was carried out to investigate the utilization 

of chemometric procedures, based on processing of data 
set generated by µXRF, in order to perform a laboratory 
scale preliminary (i.e. before mechanical-physical process-
ing) automatic check of end-of-life (EOL) iPhone electronic 
boards characteristics (i.e. manufacturing and compo-
nents presence), and related recovered products (i.e. par-
ticles) derived from processing. More in detail, PLS-DA, 
after PCA, was applied to build a model able to recognize/
classify the precious and rare earth elements starting from 
the reference energy spectra representative of the different 
elements object of investigations.

The proposed combined chemometric-µXRF approach 
presents a lot of advantages: it is objective, it does not 
require any preliminary knowledge of the sample and it 
allows to assess, in a relative simple way, the quantity of 
precious and rare earth elements that is possible to extract 
by PCB derived products (i.e. iPhone electronic boards and 
products resulting from their mechanical processing).

The proposed prediction model performs a good clas-
sification. The procedure, after the preliminary model rec-
ognition set up, is easy to implement and it is character-
ized by low operative costs, being the procedure totally 
software, especially if compared with classical methods 
usually requiring sample chemical pre-treatment and lon-
ger analytical time (i.e. ICP-OES and SEM-EDX). 

Further studies will be addressed to a systematic appli-
cation of the proposed approach to particle resulting from 
comminution, classification and physical separation of dis-
missed iPhone boards, and more in general, PCB, in order 
to perform not only a qualitative control of the different 
flow streams, but also to set up pre-concentration actions 
finalized to separate particles characterized by different 
precious and rare earth elements composition and distri-
bution. Following this approach, it will be thus possible to 
design more efficient and specialized strategies for final 
elements recovery by chemical processing.
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