an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

SIMULATED SOFC EXHAUSTS AND THEIR FIXATION ON CHLORELLA VULGARIS: STUDY ON AFFECTING PARAMETERS

  • Davide Papurello - Politecnico di Torino, DENERG , Italy
  • Maurizio Bressan - Politecnico di Torino, DENERG , Italy
  • Daniela Bona - Technology Transfer Centre, Fondazione E. Mach , Italy
  • Giovanna Flaim - Research and Innovation Centre, Fondazione E. Mach , Italy
  • Leonardo Cerasino - Research and Innovation Centre, Fondazione E. Mach , Italy
  • Silvia Silvestri - Technology Transfer Centre, Fondazione E. Mach , Italy

DOI 10.31025/2611-4135/2019.13776

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher

Editorial History

  • Received: 25 Jun 2018
  • Revised: 08 Jan 2019
  • Accepted: 08 Jan 2019
  • Available online: 08 Mar 2019

Abstract

To curtail greenhouse gas emissions local and distributed energy systems should be fed by renewable and high efficiency fuels. Anaerobic digestate of organic waste from biogas production can be adopted as a substrate, coupled to Solid Oxide Fuel Cell (SOFC) exhausts, for biomass culture. This biorefinery concept can be exploited towards the complete integration of a waste treatment plant. The work concern the preliminary tests assessed to identify the condition to obtain microalgal growth on dry digestate from anaerobic digestion of organic waste and CO2 remaining after power and heat production by fuel cells biofixation. The results of digestate pretreatment and dilution, inoculum: digestate ratio and CO2 supply system were reported. Each test was controlling operating temperature and light intensity using a common green alga, Chlorella vulgaris. Different tests were performed for testing digestate dilution (from 1:20 to 1:70) and for defining microalgal inoculum concentration (9%, 20% and 32%). All trials were performed at laboratory scale. The optimal digestate pretreatment and microalgal inoculum concentration was used for achieving CO2 biofixation in an experimental reactor (15 L). The best dilution for the digestate was found to be approximately 1:70 and inoculum percentage equal to 20%.

Keywords


References

Benemann, J. R. (1997). Pergamon, 38(96), 475–479

Choudhury, A., Chandra, H., & Arora, a. (2013). Application of solid oxide fuel cell technology for power generation - A review. Renewable and Sustainable Energy Reviews, 20, 430–442.
DOI 10.1016/j.rser.2012.11.031

Eveloy, V., & Gebreegziabher, T. (2019). Excess electricity and power-to-gas storage potential in the future renewable-based power generation sector in the United Arab Emirates. Energy, 166, 426–450.
DOI 10.1016/j.energy.2018.10.088

Franchino, M., Comino, E., Bona, F., & Riggio, V. A. (2013). Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere, 92(6), 738–744.
DOI 10.1016/j.chemosphere.2013.04.023

Hagen, A., Rasmussen, J. F. B., & Thydén, K. (2011). Durability of solid oxide fuel cells using sulfur containing fuels. Journal of Power Sources, 196(17), 7271–7276.
DOI 10.1016/j.jpowsour.2011.02.053

Ho, S., Kondo, A., Hasunuma, T., & Chang, J. (2013). Engineering strategies for improving the CO 2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresource Technology, 143, 163–171.
DOI 10.1016/j.biortech.2013.05.043

Kupecki, J., Kluczowski, R., Papurello, D., Lanzini, A., Kawalec, M., Krauz, M., & Santarelli, M. (2018). Characterization of a circular 80 mm anode supported solid oxide fuel cell (AS-SOFC) with anode support produced using high-pressure injection molding (HPIM). International Journal of Hydrogen Energy.
DOI 10.1016/j.ijhydene.2018.02.143

Lanzini, A., Ferrero, D., Papurello, D., & Santarelli, M. (2017). Reporting Degradation from Different Fuel Contaminants in Ni-anode SOFCs. Fuel Cells, 17(4).
DOI 10.1002/fuce.201600184

Lanzini, A., Leone, P., & Asinari, P. (2009). Microstructural characterization of SOFC electrodes by image analysis technique. Elsevier

Lau, P. S., Tam, N. F. Y., & Wong, Y. S. (1995). Effect of algal density on nutrient removal from primary settled wastewater. Environmental Pollution, 89, 59–66.
DOI 10.1155/2015/739147

Molino, a., Nanna, F., Ding, Y., Bikson, B., & Braccio, G. (2013). Biomethane production by anaerobic digestion of organic waste. Fuel, 103, 1003–1009.
DOI 10.1016/j.fuel.2012.07.070

Packer, M. (2009). Algal capture of carbon dioxide ; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy, 37(9), 3428–3437.
DOI 10.1016/j.enpol.2008.12.025

Papurello, D., Iafrate, C., Lanzini, A., & Santarelli, M. (2017). Trace compounds impact on SOFC performance: Experimental and modelling approach. Applied Energy, 208.
DOI 10.1016/j.apenergy.2017.09.090

Papurello, D., & Lanzini, A. (2017). SOFC single cells fed by biogas: Experimental tests with trace contaminants. Waste Management.
DOI 10.1016/j.wasman.2017.11.030

Papurello, D., Lanzini, A., Leone, P., & Santarelli, M. (2016). The effect of heavy tars (toluene and naphthalene) on the electrochemical performance of an anode-supported SOFC running on bio-syngas. Renewable Energy, 99, 747–753.
DOI 10.1016/j.renene.2016.07.029

Papurello, D., Lanzini, A., Tognana, L., Silvestri, S., & Santarelli, M. (2015). Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy, 85, 145–158.
DOI 10.1016/j.energy.2015.03.093

Papurello, D., Menichini, D., & Lanzini, A. (2017). Distributed relaxation times technique for the determination of fuel cell losses with an equivalent circuit model to identify physicochemical processes. Electrochimica Acta, 258, 98–109.
DOI 10.1016/j.electacta.2017.10.052

Papurello, D., Schuhfried, E., Lanzini, A., Romano, A., Cappellin, L., Märk, T. D., … Biasioli, F. (2015). Proton transfer reaction-mass spectrometry as a rapid inline tool for filter efficiency of activated charcoal in support of the development of Solid Oxide Fuel Cells fueled with biogas. Fuel Processing Technology, 130(C).
DOI 10.1016/j.fuproc.2014.09.042

Papurello, D., Silvestri, S., Tomasi, L., Belcari, I., Biasioli, F., & Santarelli, M. (2016a). Biowaste for SOFCs. In Energy Procedia (Vol. 101).
DOI 10.1016/j.egypro.2016.11.054

Papurello, D., Silvestri, S., Tomasi, L., Belcari, I., Biasioli, F., & Santarelli, M. (2016b). Natural Gas Trace Compounds Analysis with Innovative Systems: PTR-ToF-MS and FASTGC. In Energy Procedia (Vol. 101).
DOI 10.1016/j.egypro.2016.11.068

Papurello, D., Soukoulis, C., Schuhfried, E., Cappellin, L., Gasperi, F., Silvestri, S., … Biasioli, F. (2012). Monitoring of volatile compound emissions during dry anaerobic digestion of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry. Bioresource Technology, 126.
DOI 10.1016/j.biortech.2012.09.033

Papurello, D., Tognana, L., Lanzini, A., Smeacetto, F., Santarelli, M., Belcari, I., … Biasioli, F. (2015). Proton transfer reaction mass spectrometry technique for the monitoring of volatile sulfur compounds in a fuel cell quality clean-up system. Fuel Processing Technology, 130(C).
DOI 10.1016/j.fuproc.2014.09.041

Papurello, D., Tomasi, L., & Silvestri, S. (2018). Proton transfer reaction mass spectrometry for the gas cleaning using commercial and waste-derived materials: Focus on the siloxane removal for SOFC applications. International Journal of Mass Spectrometry, 430.
DOI 10.1016/j.ijms.2018.05.002

Papurello, D., Tomasi, L., Silvestri, S., Belcari, I., Santarelli, M., Smeacetto, F., & Biasioli, F. (2016). Biogas trace compound removal with ashes using proton transfer reaction time-of-flight mass spectrometry as innovative detection tool. Fuel Processing Technology, 145, 62–75.
DOI 10.1016/j.fuproc.2016.01.028

Papurello, D., Tomasi, L., Silvestri, S., & Santarelli, M. (2016). Evaluation of the Wheeler-Jonas parameters for biogas trace compounds removal with activated carbons. Fuel Processing Technology, 152.
DOI 10.1016/j.fuproc.2016.06.006

Rasi, S. (2009). Biogas Composition and Upgrading to Biomethane Saija Rasi Biogas Composition and Upgrading to Biomethane.
DOI 978-951-39-3607-5

Rosenberg, J. N., Mathias, A., Korth, K., Betenbaugh, M. J., & Oyler, G. A. (2011). Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa : A technical appraisal and economic feasibility evaluation. Biomass and Bioenergy, 35(9), 3865–3876.
DOI 10.1016/j.biombioe.2011.05.014

Ryu, H. J., Oh, K. K., & Kim, Y. S. (2009). Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. Journal of Industrial and Engineering Chemistry, 15(4), 471–475.
DOI 10.1016/j.jiec.2008.12.012

Saadabadi, S. A., Thallam, A., Fan, L., Lindeboom, R. E. F., Spanjers, H., & Aravind, P. V. (2019). Solid Oxide Fuel Cells Fuelled with Biogas : Potential and Constraints. Renewable Energy, 134, 1–26.
DOI 10.1016/j.renene.2018.11.028

Santarelli, M., Briesemeister, L., Gandiglio, M., Herrmann, S., Kuczynski, P., Kupecki, J., … Vega, L. F. (2017). Carbon recovery and re-utilization ( CRR ) from the exhaust of a solid oxide fuel cell ( SOFC): Analysis through a proof-of-concept. Biochemical Pharmacology, 18, 206–221.
DOI 10.1016/j.jcou.2017.01.014

Santarelli, M., Briesemeister, L., Gandiglio, M., Herrmann, S., Kuczynski, P., Kupecki, J., … Vega, L. F. (2017). Carbon recovery and re-utilization (CRR) from the exhaust of a solid oxide fuel cell (SOFC): Analysis through a proof-of-concept. Journal of CO2 Utilization, 18.
DOI 10.1016/j.jcou.2017.01.014

Shiratori, Y., Ijichi, T., Oshima, T., & Sasaki, K. (2010). Internal reforming SOFC running on biogas. International Journal of Hydrogen Energy, 35(15), 7905–7912.
DOI 10.1016/j.ijhydene.2010.05.064

Strange, K., Hastings, P. M., & Wales, N. S. (2010). Enhancing participation in kitchen waste collections : International review of overseas experience. In Defra Waste & Resources Evidence Programme WR0209

Uggetti, E., Sialve, B., Latrille, E., & Steyer, J. P. (2014). Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437–443.
DOI 10.1016/j.biortech.2013.11.036

Xia, A., & Murphy, J. D. (2016). Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends in Biotechnology, 34(4), 264–275.
DOI 10.1016/j.tibtech.2015.12.010

Zuliani, L., Frison, N., Jelic, A., Fatone, F., Bolzonella, D., & Ballottari, M. (2016). Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater , Sewage Sludge and Agro-Waste.
DOI 10.3390/ijms17101692


sep
30