GO TO
DOI 10.31025/2611-4135/2018.13665
Released under CC BY-NC-ND
Copyright: © 2018 Cisa Publisher
Allegrini, E., Maresca, A., Olsson, M. E., Holtze, M. S., Boldrin, A., & Astrup, T. F. (2014). Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Management, 34(9), 1627-1636.
DOI 10.1016/j.wasman.2014.05.003
Baccini, P., & Brunner, P. H. (2012). Metabolism of the Anthroposphere, Analysis, Evaluation, Design. Cambridge, Massachusetts: MIT Press.
Buyny, S., & Lauber, U. (2009). Weiterentwicklung des Indikators "Rohstoffproduktivität" der nationalen Nachhaltigkeitsstrategie, Berechnung der Importe und Exporte in Rohstoffäquivalenten. Wirtschaft und Statistik(11), 1133-1145.
Ehrlich, P. A., & Holdren, J. P. (1971). Impacts of population growth. Science, 171, 1212-1217.
Fellner, J., Lederer, J., Purgar, A., Winterstetter, A., Rechberger, H., Winter, F., & Laner, D. (2015). Evaluation of resource recovery from waste incineration residues – The case of zinc. Waste Management, 37, 95-103.
DOI 10.1016/j.wasman.2014.10.010
Gehrmann, H.-J., Hiebel, M., & Simon, F. G. (2017). Methods for the Evaluation of Waste Treatment Processes. Journal of Engineering, 2017, 3567865 (3567861-3567813).
DOI 10.1155/2017/3567865
Gronholz, C. (2017). [Tartech Eco Industries AG, Berlin; personal communication].
Halada, K., Ijima, K., Katagiri, N., & Ohkura, T. (2001). An approximate estimation of total materials requirement of metals. Journal of the Japan Institute of Metals, 65(7), 564-570.
Holm, O., & Simon, F. G. (2017). Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Management, 59, 229-236.
DOI 10.1016/j.wasman.2016.09.004
Holm, O., Wollik, E., & Johanna Bley, T. (2017). Recovery of copper from small grain size fractions of municipal solid waste incineration bottom ash by means of density separation. International Journal of Sustainable Engineering, 1-11.
DOI 10.1080/19397038.2017.1355415
Huijbregts, M. A. J., Hellweg, S., Frischknecht, R., Hendriks, H. W. M., Hungerbühler, K., & Hendriks, A. J. (2010). Cumulative Energy Demand As Predictor for the Environmental Burden of Commodity Production. Environmental Science & Technology, 44(6), 2189-2196.
DOI 10.1021/es902870s
Kral, U., Lin, C. Y., Kellner, K., Ma, H. W., & Brunner, P. H. (2014). The Copper Balance of Cities, Exploratory Insights into a European and an Asian City. Jornal of Industrial Ecology, 18(3), 432-444.
Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., & Fischer-Kowalski, M. (2009). Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 68(10), 2696-2705.
Kuchta, K., & Enzner, V. (2015). Ressourceneffizienz der Metallrückgewinnung vor und nach der Verbrennung. In K. J. Thomé-Kozmiensky (Ed.), Mineralische Nebenprodukte und Abfälle 2 (pp. 105-116). Neuruppin: TK Verlag.
Maletz, R., Dornack, C., & Ziyang, L. (Eds.). (2018). Source Separation and Recycling, Implementation and Benefits for a Circular Economy (Vol. 63): Springer International Publishing.
Morf, L. S., Gloor, R., Haag, O., Haupt, M., Skutan, S., Lorenzo, F. D., & Böni, D. (2013). Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant. Waste Management, 33(3), 634-644.
DOI 10.1016/j.wasman.2012.09.010
Muchova, L., Bakker, E., & Rem, P. (2009). Precious metals in municipal solid waste incineration bottom ash. Water, Air and Soil Pollution: Focus, 9, 107-116.
Saurat, M., & Ritthoff, M. (2013). Calculating MIPS 2.0. Resources, 2(4), 581-607.
DOI 10.3390/resources2040581
Simon, F. G., & Holm, O. (2017). Exergetische Bewertung von Rohstoffen am Beispiel von Kupfer. Chemie Ingenieur Technik, 89(1-2), 108-116.
DOI 10.1002/cite.201600089
Statistisches Bundesamt. (2017). Umweltnutzung und Wirtschaft, Ausgabe 2016 (www.destatis.de), Wiesbaden
Steger, S., Ritthoff, M., Dehoust, G., Bergmann, T., Schüler, D., Kosinka, I., Bulach, W., Krause, P., & Oetjen-Dehne, R. (2018). Ressourcenschonung durch eine stoffstromorientierte Sekundärrohstoffwirtschaft (Saving Resources by a Material Category Oriented Recycling Product Industry) (FKZ 3714 93 330 0). Umweltbundesamt (Federal Environmental Agency), Dessau (Germany)
Tanikawa, H., & Hashimoto, S. (2009). Urban stock over time: spatial material stock analysis using 4d-GIS. Building Research & Information, 37(5-6), 483-502.
DOI 10.1080/09613210903169394
Verein Deutscher Ingenieure. (2012). Cumulative energy demand (CED) - Terms, definitions, method of calculation (VDI 4600). Beuth-Verlag, Berlin
Wagner, J., Heidrich, K., Baumann, J., Kügler, T., & Reichenbach, J. (2012). Determination of the contributions of the waste management sector to increasing resource productivity and of the share recycling takes in the value-added chain displaying the paths of recovery of relevant waste (UBA - FB 001608, Texte 14/2012). Umweltbundesamt, Dessau-Roßlau
Wünsch, C., & Simon, F. G. (2018). The Reduction of Greenhouse Gas Emissions Through the Source-Separated Collection of Household Waste in Germany. In R. Maletz, C. Dornack, & Z. Lou (Eds.), Source Separation and Recycling - Implementation and Benefits for a Circular Economy. Berlin, Heidelberg: Springer International Publishing.
DOI 10.1007/698_2017_35