an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Guido Grause - Graduate School of Environmental Studies, Tohoku University, Japan


Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher


The uncontrolled resource consumption of our time causes serious ecological and economic problems. The continuation of high consumption of fossil fuels triggers climate change, while important metal ore deposits may be depleted within the near future. This situation requires a new kind of solution. For this purpose, the Ecopoint concept is proposed for the limitation of the consumption of fossil fuels and abiotic other non-renewable resources, as well as the land used to produce renewable ones. In this concept, the world’s population is provided with resource shares (Ecopoints) that are used for purchasing products containing virgin resources. Using the polymerization of high density polyethylene as an example, it is shown that the Ecopoints concept favours options like sugar-based biomass (sweet sorghum, sugarcane, sugar beet) as a feedstock for bioethanol derived ethylene and waste materials (waste plastic, municipal solid waste) as a feedstocks for ethylene derived from cracking or gasification/Fischer-Tropsch synthesis over the conventional use of fossil fuel derived ethylene.


Editorial History

  • Received: 12 Jun 2018
  • Revised: 10 Oct 2018
  • Accepted: 12 Dec 2018
  • Available online: 08 Mar 2019


Acheampong, M., Ertem, F. C., Kappler, B., & Neubauer, P. (2017). In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable? Renew. Sust. Energ. Rev., 75, 927-937.
DOI 10.1016/j.rser.2016.11.074

Belboom, S., & Léonard, A. (2014). Importance of LUC and ILUC on the carbon footprint of bioproduct: case of bio-HDPE. Matériaux & Techniques, 102(2), 201

Bos, H. L., Meesters, K. P. H., Conijn, S. G., Corré, W. J., & Patel, M. K. (2012). Accounting for the constrained availability of land: a comparison of bio‐based ethanol, polyethylene, and PLA with regard to non‐renewable energy use and land use. Biofuels Bioprod. Biorefining, 6(2), 146-158.
DOI 10.1002/bbb.1320

Budzinski, M., & Nitzsche, R. (2016). Comparative economic and environmental assessment of four beech wood based biorefinery concepts. Bioresource Technol., 216, 613-621.
DOI 10.1016/j.biortech.2016.05.111

Cao, V., Margni, M., Favis, B. D., & Deschênes, L. (2015). Aggregated indicator to assess land use impacts in life cycle assessment (LCA) based on the economic value of ecosystem services. J. Clean. Prod., 94, 56-66.
DOI 10.1016/j.jclepro.2015.01.041

Chandra, V. V., & Hemstock, S. L. (2016). The Potential of Sugarcane Bioenergy in Fiji. Sugar Tech, 18(3), 229-235.
DOI 10.1007/s12355-015-0409-7

Covert, T., Greenstone, M., & Knittel, C. R. (2016). Will We Ever Stop Using Fossil Fuels? J. Econ. Perspect., 30(1), 117-138.
DOI 10.1257/jep.30.1.117

CPMDatabase. from

Ecoinvent. from

FAOSTAT. (2015). Retrieved from:

Feng, J., Xiulian, P., Ke, G., Yuxiang, C., Gen, L., & Xinhe, B. (2018). Shape‐Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Angew. Chem. Int. Ed., 57(17), 4692-4696.
DOI 10.1002/anie.201801397

Gibon, T., Arvesen, A., & Hertwich, E. G. (2017). Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options. Renew. Sust. Energ. Rev., 76, 1283-1290.
DOI 10.1016/j.rser.2017.03.078

Grause, G. (2018). Resource control by a sustainability based currency equivalent. J. Clean. Prod., 200, 533-541.
DOI 10.1016/j.jclepro.2018.07.297

Grause, G., Buekens, A., Sakata, Y., Okuwaki, A., & Yoshioka, T. (2011). Feedstock recycling of waste polymeric material. J. Mater. Cycles Waste Manage., 13(4), 265-282.
DOI 10.1007/s10163-011-0031-z

Herr, A., O’Connell, D., Farine, D., Dunlop, M., Crimp, S., & Poole, M. (2012). Watching grass grow in Australia: is there sufficient production potential for a biofuel industry? Biofuels Bioprod. Biorefining, 6(3), 257-268.
DOI 10.1002/bbb.1321

Iwata, T. (2015). Biodegradable and Bio‐Based Polymers: Future Prospects of Eco‐Friendly Plastics. Angew. Chem. Int. Ed., 54(11), 3210-3215.
DOI 10.1002/anie.201410770

Kamaruddin, M. A., Yusoff, M. S., Rui, L. M., Isa, A. M., Zawawi, M. H., & Alrozi, R. (2017). An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environ. Sci. Pollut. Res., 24(35), 26988-27020.
DOI 10.1007/s11356-017-0303-9

Liptow, C., Tillman, A.-M., & Janssen, M. (2015). Life cycle assessment of biomass-based ethylene production in Sweden — is gasification or fermentation the environmentally preferable route? Int. J. Life. Cycle Assess., 20(5), 632-644.
DOI 10.1007/s11367-015-0855-1

Liu, J., Mooney, H., Hull, V., Davis, S. J., Gaskell, J., Hertel, T., . . . Li, S. (2015). Systems integration for global sustainability. Science, 347(6225).
DOI 10.1126/science.1258832

Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sust. Energ. Rev., 73, 346-368.
DOI 10.1016/j.rser.2017.01.142

Masih, M., Algahtani, I., & De Mello, L. (2010). Price dynamics of crude oil and the regional ethylene markets. Energy Econ., 32(6), 1435-1444.
DOI 10.1016/j.eneco.2010.03.009

Nuss, P., Gardner, K. H., & Bringezu, S. (2013). Environmental Implications and Costs of Municipal Solid Waste-Derived Ethylene. J. Ind. Ecol., 17(6), 912-925.
DOI 10.1111/jiec.12066

. Plastics – the Facts 2017 (P. E. M. R. G. (PEMRG), Trans.). (2018) (pp. 23): Plastics Europe

Popp, J., Lakner, Z., Harangi-Rákos, M., & Fári, M. (2014). The effect of bioenergy expansion: Food, energy, and environment. Renew. Sust. Energ. Rev., 32, 559-578.
DOI 10.1016/j.rser.2014.01.056

Röder, M., & Thornley, P. (2018). Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK. Waste Manage., 74, 241-252.
DOI 10.1016/j.wasman.2017.11.042

Schneider, J., Struve, M., Trommler, U., Schlüter, M., Seidel, L., Dietrich, S., & Rönsch, S. (2018). Performance of supported and unsupported Fe and Co catalysts for the direct synthesis of light alkenes from synthesis gas. Fuel Process. Technol., 170, 64-78.
DOI 10.1016/j.fuproc.2017.10.018

Thompson, R. C., Swan, S. H., Moore, C. J., & vom Saal, F. S. (2009). Our plastic age. Philos. Trans. R. Soc. B-Biol. Sci., 364(1526), 1973-1976.
DOI 10.1098/rstb.2009.0054

Tsiropoulos, I., Faaij, A. P. C., Lundquist, L., Schenker, U., Briois, J. F., & Patel, M. K. (2015). Life cycle impact assessment of bio-based plastics from sugarcane ethanol. J. Clean. Prod., 90, 114-127.
DOI 10.1016/j.jclepro.2014.11.071

van den Oever, M., & Molenveld, K. (2017). Replacing fossil based plastic performance products by bio-based plastic products—Technical feasibility. New Biotech., 37, 48-59.
DOI 10.1016/j.nbt.2016.07.007

Vandermeulen, V., Van der Steen, M., Stevens, C. V., & Van Huylenbroeck, G. (2012). Industry expectations regarding the transition toward a biobased economy. Biofuels Bioprod. Biorefining, 6(4), 453-464.
DOI 10.1002/bbb.1333

Zhang, X., Lei, H., Chen, S., & Wu, J. (2016). Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem., 18(15), 4145-4169.
DOI 10.1039/C6GC00911E