Share
Released under CC BY-NC-ND
Copyright: © 2019 CISA Publisher
Antoniou, N., & Zabaniotou, A. (2013). Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery. Renewable and Sustainable Energy Reviews, 20, 539–558.
DOI 10.1016/j.rser.2012.12.005
Aylón, E., Callén, M. S., López, J. M., Mastral, A. M., Murillo, R., Navarro, M. V., & Stelmach, S. (2005). Assessment of tire devolatilization kinetics. Journal of Analytical and Applied Pyrolysis, 74(1–2), 259–264.
DOI 10.1016/J.JAAP.2004.09.006
Banar, M., Akyildiz, V., Özkan, A., Çokaygil, Z., & Onay, Ö. (2012). Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel). Energy Conversion and Management, 62, 22–30.
DOI 10.1016/j.enconman.2012.03.019
Barlaz, M. A., Eleazer, W. E., & Whittle, D. J. (1993). Potential To Use Waste Tires As Supplemental Fuel In Pulp And Paper Mill Boilers, Cement Kilns And In Road Pavement. Waste Management and Research, 11, 463-480.
DOI 10.1006/wmre. 1993.1050
Chen, J. H., Chen, K. S., & Tong, L. Y. (2001). On the pyrolysis kinetics of scrap automotive tires. Journal of Hazardous Materials, 84(1), 43–55.
DOI 10.1016/S0304-3894(01)00180-7
Cheung, K. Y., Lee, K. L., Lam, K. L., Chan, T. Y., Lee, C. W., & Hui, C. W. (2011). Operation strategy for multi-stage pyrolysis. Journal of Analytical and Applied Pyrolysis, 91, 165–182.
DOI 10.1016/j.jaap.2011.02.004
Cheung, K. Y., Lee, K. L., Lam, K. L., Lee, C. W., & Hui, C. W. (2011). Integrated kinetics and heat flow modelling to optimise waste tyre pyrolysis at different heating rates. Fuel Processing Technology, 92(5), 856–863.
DOI 10.1016/j.fuproc.2010.11.028
Conesa, J. ., Font, R., & Marcilla, A. (1997). Mass spectrometry validation of a kinetic model for the thermal decomposition of tyre wastes. Journal of Analytical and Applied Pyrolysis, 43(1), 83–96.
DOI 10.1016/S0165-2370(97)00057-0
Danon, B., & Görgens, J. (2015). Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochimica Acta, 621, 56–60.
DOI 10.1016/j.tca.2015.10.008
Danon, B., Mkhize, N. M., Van Der Gryp, P., & Görgens, J. F. (2015a). Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochimica Acta, 601, 45–53.
DOI 10.1016/j.tca.2014.12.003
Friedman, H. L. (1964). Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Symposia, 4, 183–195
Giugliano, M. M., Cernuschi, S., Ghezzi, U., Grosso, M., & Giugliano, M. M. (1999). Evaluation of Waste Tires Utilization in Cement Kilns Experimental Evaluation of Waste Tires Utilization in Cement Kilns. Journal of the Air & Waste Management Association Journal of the Air & Waste Management Association J. Air & Waste Manage. Assoc, 4912(49), 1405–1414.
DOI 10.1080/10473289.1999.10463976doi.org/10.1080/10473289.1999.10463976
Kim, Seung; Park, Jae K.; Chun, H.-D. (1995). Pyrolysis kinetics of scrap tire rubbers. 1: Using DTG and TGA. Journal of Environmental Engineering, 121(7), 507–514. Retrieved from
DOI 10.1061/(ASCE)0733-9372(1995)121:7(507)
Kissinger, H. E. (1957). Reaction kinetics in differential analysis. Analytical Chemistry, 27, 1702–1706
Lah, B., Klinar, D., & Likozar, B. (2013). Pyrolysis of natural, butadiene, styrene–butadiene rubber and tyre components: Modelling kinetics and transport phenomena at different heating rates and formulations. Chemical Engineering Science, 87, 1–13.
DOI 10.1016/J.CES.2012.10.003
Lam, K.-L., Lee, C.-W., & Hui, C.-W. (2010). Multi-stage Waste Tyre Pyrolysis: An Optimisation Approach. Chemical Engineering Transactions, 21(21), 853–858.
DOI 10.3303/CET1021143
Leung, D. Y. C., & Wang, C L.. (1999). Kinetic Modeling of Scrap Tire Pyrolysis. Energy and Fuels, 13(2), 421–427.
DOI 10.1021/ef980124l
Lopez, G., Aguado, R., Olazar, M., Arabiourrutia, M., & Bilbao, J. (2009). Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Management, 29(10), 2649–2655.
DOI 10.1016/j.wasman.2009.06.005
Lopez, G., Olazar, M., Amutio, M., Aguado, R., & Bilbao, J. (2009). Influence of tire formulation on the products of continuous pyrolysis in a conical spouted bed reactor. Energy and Fuels, 23(11), 5423–5431.
DOI 10.1021/ef900582k
Mkhize, N. M., van der Gryp, P., Danon, B., & Görgens, J. F. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 120, 314–320.
DOI 10.1016/j.jaap.2016.04.019
Mui, E. L. K., Ko, D. C. K., & McKay, G. (2004). Production of active carbons from waste tyres––a review. Carbon, 42(14), 2789–2805.
DOI 10.1016/J.CARBON.2004.06.023
Mui, E. L. K., Lee, V. K. C., Cheung, W. H., & McKay, G. (2008). Kinetic Modeling of Waste Tire Carbonization. Energy and Fuels, 22(3), 1650–1657.
DOI 10.1021/ef700601g
Olazar, M., Aguado, R., Vélez, D., Arabiourrutia, M., & Bilbao, J. (2005). Kinetics of scrap tire pyrolysis in a conical spouted bed reactor. Industrial and Engineering Chemistry Research, 81, 127–132.
DOI 10.1021/ie040259g
Quek, A., & Balasubramanian, R. (2012). Mathematical modeling of rubber tire pyrolysis. Journal of Analytical and Applied Pyrolysis, 95, 1.
DOI 10.1016/j.jaap.2012.01.012
Quek, A., & Balasubramanian, R. (2013). Liquefaction of waste tires by pyrolysis for oil and chemicals - A review. Journal of Analytical and Applied Pyrolysis, 101, 1–16.
DOI 10.1016/j.jaap.2013.02.016
Seidelt, S., Müller-Hagedorn, M., & Bockhorn, H. (2006). Description of tire pyrolysis by thermal degradation behaviour of main components. Journal of Analytical and Applied Pyrolysis, 75, 11–18.
DOI 10.1016/j.jaap.2005.03.002
Senneca, O., Salatino, P., & Chirone, R. (1999). A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres. Fuel, 78(13), 1575–1581.
DOI 10.1016/S0016-2361(99)00087-3
Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., & Balas, A. (2012). Progress in used tyres management in the European Union: A review. Waste Management, 32, 1742–1751.
DOI 10.1016/j.wasman.2012.05.010
Williams, P. T. (2013). Pyrolysis of waste tyres: A review. Waste Management, 33, 1714–1728.
DOI 10.1016/j.wasman.2013.05.003
Zabaniotou, A., Madau, P., Oudenne, P. D., Jung, C. G., Delplancke, M. P., & Fontana, A. (2004). Active carbon production from used tire in two-stage procedure: Industrial pyrolysis and bench scale activation with H2O-CO2mixture. Journal of Analytical and Applied Pyrolysis, 72, 289–297.
DOI 10.1016/j.jaap.2004.08.002