an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Samuel Ayodele Iwarere - Chemical Engineering, University of KwaZulu-Natal, South Africa
  • Ntandoyenkosi Malusi Mkhize - Chemical Engineering, University of KwaZulu-Natal, South Africa


Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


The present study entails investigating the fractional devolatilisation effect on the passenger car tyre (PCT) and truck tyre (TT). Thermograms and their first derivatives are used to profile devolatilisation of the passenger and truck tyres rubbery fractions. Both tyre types rubbery fractions consist of mainly natural rubber (or polyisoprene, NR) and synthetic rubber (polybutadiene, BR and styrene-butadiene, SBR). The NR is relatively significant compared to the BR and SBR in the TT. In the PCT, the rubbery fraction showed equal distributions between the NR and BR-SBR. Unlike conventional waste resources pyrolysis processes where the aim is towards energy recovery, novel pyrolysis is designed based on the characteristics of the materials in order to promote the production of the valuable products in addition to the energy recovery. Therefore, kinetic mechanisms pathways of the rubbery fraction devolatilisation from waste tyre pyrolysis are studied and models are developed. Model-free methods, such as Friedman and Kissinger are used to model the kinetics parameters.


Editorial History

  • Received: 16 Jul 2019
  • Revised: 28 Sep 2019
  • Accepted: 04 Oct 2019
  • Available online: 20 Nov 2019


Antoniou, N., & Zabaniotou, A. (2013). Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery. Renewable and Sustainable Energy Reviews, 20, 539–558.
DOI 10.1016/j.rser.2012.12.005

Aylón, E., Callén, M. S., López, J. M., Mastral, A. M., Murillo, R., Navarro, M. V., & Stelmach, S. (2005). Assessment of tire devolatilization kinetics. Journal of Analytical and Applied Pyrolysis, 74(1–2), 259–264.
DOI 10.1016/J.JAAP.2004.09.006

Banar, M., Akyildiz, V., Özkan, A., Çokaygil, Z., & Onay, Ö. (2012). Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel). Energy Conversion and Management, 62, 22–30.
DOI 10.1016/j.enconman.2012.03.019

Barlaz, M. A., Eleazer, W. E., & Whittle, D. J. (1993). Potential To Use Waste Tires As Supplemental Fuel In Pulp And Paper Mill Boilers, Cement Kilns And In Road Pavement. Waste Management and Research, 11, 463-480.
DOI 10.1006/wmre. 1993.1050

Chen, J. H., Chen, K. S., & Tong, L. Y. (2001). On the pyrolysis kinetics of scrap automotive tires. Journal of Hazardous Materials, 84(1), 43–55.
DOI 10.1016/S0304-3894(01)00180-7

Cheung, K. Y., Lee, K. L., Lam, K. L., Chan, T. Y., Lee, C. W., & Hui, C. W. (2011). Operation strategy for multi-stage pyrolysis. Journal of Analytical and Applied Pyrolysis, 91, 165–182.
DOI 10.1016/j.jaap.2011.02.004

Cheung, K. Y., Lee, K. L., Lam, K. L., Lee, C. W., & Hui, C. W. (2011). Integrated kinetics and heat flow modelling to optimise waste tyre pyrolysis at different heating rates. Fuel Processing Technology, 92(5), 856–863.
DOI 10.1016/j.fuproc.2010.11.028

Conesa, J. ., Font, R., & Marcilla, A. (1997). Mass spectrometry validation of a kinetic model for the thermal decomposition of tyre wastes. Journal of Analytical and Applied Pyrolysis, 43(1), 83–96.
DOI 10.1016/S0165-2370(97)00057-0

Danon, B., & Görgens, J. (2015). Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochimica Acta, 621, 56–60.
DOI 10.1016/j.tca.2015.10.008

Danon, B., Mkhize, N. M., Van Der Gryp, P., & Görgens, J. F. (2015a). Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochimica Acta, 601, 45–53.
DOI 10.1016/j.tca.2014.12.003

Friedman, H. L. (1964). Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Symposia, 4, 183–195

Giugliano, M. M., Cernuschi, S., Ghezzi, U., Grosso, M., & Giugliano, M. M. (1999). Evaluation of Waste Tires Utilization in Cement Kilns Experimental Evaluation of Waste Tires Utilization in Cement Kilns. Journal of the Air & Waste Management Association Journal of the Air & Waste Management Association J. Air & Waste Manage. Assoc, 4912(49), 1405–1414.
DOI 10.1080/

Kim, Seung; Park, Jae K.; Chun, H.-D. (1995). Pyrolysis kinetics of scrap tire rubbers. 1: Using DTG and TGA. Journal of Environmental Engineering, 121(7), 507–514. Retrieved from
DOI 10.1061/(ASCE)0733-9372(1995)121:7(507)

Kissinger, H. E. (1957). Reaction kinetics in differential analysis. Analytical Chemistry, 27, 1702–1706

Lah, B., Klinar, D., & Likozar, B. (2013). Pyrolysis of natural, butadiene, styrene–butadiene rubber and tyre components: Modelling kinetics and transport phenomena at different heating rates and formulations. Chemical Engineering Science, 87, 1–13.
DOI 10.1016/J.CES.2012.10.003

Lam, K.-L., Lee, C.-W., & Hui, C.-W. (2010). Multi-stage Waste Tyre Pyrolysis: An Optimisation Approach. Chemical Engineering Transactions, 21(21), 853–858.
DOI 10.3303/CET1021143

Leung, D. Y. C., & Wang, C L.. (1999). Kinetic Modeling of Scrap Tire Pyrolysis. Energy and Fuels, 13(2), 421–427.
DOI 10.1021/ef980124l

Lopez, G., Aguado, R., Olazar, M., Arabiourrutia, M., & Bilbao, J. (2009). Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Management, 29(10), 2649–2655.
DOI 10.1016/j.wasman.2009.06.005

Lopez, G., Olazar, M., Amutio, M., Aguado, R., & Bilbao, J. (2009). Influence of tire formulation on the products of continuous pyrolysis in a conical spouted bed reactor. Energy and Fuels, 23(11), 5423–5431.
DOI 10.1021/ef900582k

Mkhize, N. M., van der Gryp, P., Danon, B., & Görgens, J. F. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 120, 314–320.
DOI 10.1016/j.jaap.2016.04.019

Mui, E. L. K., Ko, D. C. K., & McKay, G. (2004). Production of active carbons from waste tyres––a review. Carbon, 42(14), 2789–2805.
DOI 10.1016/J.CARBON.2004.06.023

Mui, E. L. K., Lee, V. K. C., Cheung, W. H., & McKay, G. (2008). Kinetic Modeling of Waste Tire Carbonization. Energy and Fuels, 22(3), 1650–1657.
DOI 10.1021/ef700601g

Olazar, M., Aguado, R., Vélez, D., Arabiourrutia, M., & Bilbao, J. (2005). Kinetics of scrap tire pyrolysis in a conical spouted bed reactor. Industrial and Engineering Chemistry Research, 81, 127–132.
DOI 10.1021/ie040259g

Quek, A., & Balasubramanian, R. (2012). Mathematical modeling of rubber tire pyrolysis. Journal of Analytical and Applied Pyrolysis, 95, 1.
DOI 10.1016/j.jaap.2012.01.012

Quek, A., & Balasubramanian, R. (2013). Liquefaction of waste tires by pyrolysis for oil and chemicals - A review. Journal of Analytical and Applied Pyrolysis, 101, 1–16.
DOI 10.1016/j.jaap.2013.02.016

Seidelt, S., Müller-Hagedorn, M., & Bockhorn, H. (2006). Description of tire pyrolysis by thermal degradation behaviour of main components. Journal of Analytical and Applied Pyrolysis, 75, 11–18.
DOI 10.1016/j.jaap.2005.03.002

Senneca, O., Salatino, P., & Chirone, R. (1999). A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres. Fuel, 78(13), 1575–1581.
DOI 10.1016/S0016-2361(99)00087-3

Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., & Balas, A. (2012). Progress in used tyres management in the European Union: A review. Waste Management, 32, 1742–1751.
DOI 10.1016/j.wasman.2012.05.010

Williams, P. T. (2013). Pyrolysis of waste tyres: A review. Waste Management, 33, 1714–1728.
DOI 10.1016/j.wasman.2013.05.003

Zabaniotou, A., Madau, P., Oudenne, P. D., Jung, C. G., Delplancke, M. P., & Fontana, A. (2004). Active carbon production from used tire in two-stage procedure: Industrial pyrolysis and bench scale activation with H2O-CO2mixture. Journal of Analytical and Applied Pyrolysis, 72, 289–297.
DOI 10.1016/j.jaap.2004.08.002