an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

MONITORING OF HEAVY METALS, EOX AND LAS IN SEWAGE SLUDGE FOR AGRICULTURAL USE: A CASE STUDY

  • Ali Khakbaz - Department Polytechnic of Engineering and Architecture, University of Udine, Italy
  • Maria De Nobili - Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Italy
  • Matia Mainardis - Department Polytechnic of Engineering and Architecture, University of Udine, Italy
  • Marco Contin - Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Italy
  • Eleonora Aneggi - Department Polytechnic of Engineering and Architecture, University of Udine, Italy
  • Michele Mattiussi - Laboratorio Analisi Ambientali e Matrici Sanitarie, ARPA FVG, Italy
  • Igino Cabras - Laboratorio Analisi Ambientali e Matrici Sanitarie, ARPA FVG, Italy
  • Marco Busut - Laboratorio Analisi Ambientali e Matrici Sanitarie, ARPA FVG, Italy
  • Daniele Goi - Department Polytechnic of Engineering and Architecture, University of Udine, Italy

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


Abstract

Subsequent to the increasing diffusion of wastewater treatment, particularly in high- and middle-income countries, the sewage sludge generated should be treated and valorised in an ecological and economic way, thus contributing to the circular economy. In this study, the monitoring of Heavy Metals (HM), Extractable Organic Halogens (EOX) and Linear Alkylbenzene Sulphonate (LAS) in sewage sludge from 10 different wastewater treatment plants located in Friuli Venezia Giulia (Italy) was reported, and their macronutrient content provided. The obtained results showed, for all tested samples, that HM content in sewage sludge was below the maximum permitted limits provided for by Italian and European regulations for agricultural reuse. Comparison with a similar monitoring campaign carried out in 2006 revealed how, while wastewater treatment plants efficiently resolved water pollution, they accumulated heavy metals and other persistent toxic compounds in sludge, thus restricting their potential reuse. Consequently, consistent and regular sludge monitoring should be undertaken to prevent soil and groundwater contamination. These outcomes could be of particular relevance for the future perspective of agricultural reuse of sewage sludge in waste management practices.

Keywords


Editorial History

  • Received: 25 Sep 2019
  • Revised: 24 Mar 2020
  • Accepted: 25 Mar 2020
  • Available online: 24 Jul 2020

References

Abis, M., Calmano, W., Kuchta, K., 2018. Innovative technologies for phosphorus recovery from sewage sludge ash. Detritus. 1, 23-29.
DOI 10.26403/detritus/2018.23

American Society of Civil Engineers (ASCE) and American Water Works Association (AWWA), 1996. Technology Transfer Handbook: Management of Water Treatment Plant Residuals. ASCE Publications, Denver (CO). https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30004PI0.TXT

Anjum, M., Al-Makishah, N.A., Barakat, M.A., 2016. Wastewater sludge stabilization using pre-treatment methods. Process Saf. Environ. 102, 615-632.
DOI 10.1016/j.psep.2016.05.022

Ashekuzzaman, S.M., Forrestal, P., Richards, K., Fenton, O., 2019. Dairy industry derived wastewater treatment sludge: Generation, type and characterization of nutrients and metals for agricultural reuse. J. Clean. Prod. 230, 1266-1275.
DOI 10.1016/j.jclepro.2019.05.025

Braguglia, C.M., Carozza, N., Coors, A., Gallipoli, A., Gianico, A., Guillon, E., Kunkel, U., Mascolo, G., Richter, E., Tomei, M.C., Ternes, T.A., Mininni, G., 2014. Quality assessment of digested sludges produced by advanced stabilization processes. Environ. Sci. Pollut. Res. 22, 7216–7235.
DOI 10.1007/s11356-014-3090-6

Chanaka Udayanga, W.D., Veksha, A., Giannis, A., Lisak, G., Chang, V.W.C., Lim, T.T., 2018. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel 226, 721–744.
DOI 10.1016/j.fuel.2018.04.045

Chen, Z., Hu, S., 2019. Heavy metals distribution and their bioavailability in earthworm assistant sludge treatment wetland. J. Hazard. Mater. 366, 615-623.
DOI 10.1016/j.jhazmat.2018.12.039

Collivignarelli, M.C., Abbà, A., Benigna, I., 2020. The reuse of biosolids on agricultural land: Critical issues and perspective. Water Environ. Res. 91(1), 11-25.
DOI 10.1002/wer.1196

Contreras Lopez, M.C., 2003. Determination of potentially bioaccumulating complex mixtures of organochlorine compounds in wastewater: a review. Environ. Int. 28, 751–759.
DOI 10.1016/S0160-4120(02)00120-4

Czerska A., Smith S. R. (2008) Effects of air-drying and storing sewage sludge biosolids on enteric pathogens, indicators and nutrients. Centre for Environmental Control and Waste Management Department of Civil and Environmental Engineering. https://waterportal.com.au/swf/images/swf-files/419---003-biosolids-literature-review.pdf

Di Maria, F., Ayalon, O., Daskal, S., 2018. Biodegradable waste management by anaerobic digestion: a comparison between policy approaches and regulation in Italy and Israel. Detritus. 3, 58-67.
DOI 10.31025/2611-4135/2018.13721

European Commission, 2009. Environmental, economic and social impacts of the use of sewage sludge on land. Consultation Report on Options and Impacts, Report by RPA, Milieu Ltd and WRc for the European Commission, DG Environment, European Commission

European Union, 2000: Working Document on Sludge, Third Draft, 27 April 2000. Brussels, Belgium

European Union, 2004: Working Document on Sludge and Biowaste, EUROPEAN COMMISSION DIRECTORATE-GENERAL ENVIRONMENT, Directorate A - Communications, Governance, Production, Consumption and Waste, ENV.A2 - Production, Consumption & Waste, Brussels, 18 December 2003, DG ENV.A.2/LM

Eurostat, Sewage sludge production and disposal, last update 19.11.2018. https://ec.europa.eu/eurostat/web/products-datasets/product?code=env_ww_spd

Emilia Romagna Region: Determination of General Director of environment, soil and coast preservation n. 11046 of 29/07/2005. BUR Emilia Romagna n.120 of 29/08/2005. http://bur.regione.emilia romagna.it/archivio/bollettino_download?anno=2005&num_boll=120

Fijalkowski, K., Rorat, A., Grobelak, A., Kacprzak, M.J., 2017. The presence of contaminations in sewage sludge – the current situation. J. Environ. Manage. 203, 1126-1136.
DOI 10.1016/j.jenvman.2017.05.068

García, M.T., Campos, E., Ribosa, I., Latorre, A., Sánchez-Leal, J., 2005. Anaerobic digestion of linear alkyl benzene sulfonates: biodegradation kinetics and metabolite analysis. Chemosphere 60, 1636–1643.
DOI 10.1016/j.chemosphere.2005.02.048

Gawlik, B.M., Bidoglio, G., 2006. Background values in European soils and sewage sludges. Part I European Commission, Brussels

Gherghel, A., Teodosiu, C., De Gisi, S., 2019. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 228, 244-263.
DOI 10.1016/j.jclepro.2019.04.240

Goi, D., Tubaro, F., Dolcetti, G., 2006. Analysis of metals and EOX in sludge from municipal wastewater treatment plants: A case study. Waste Manage. 26, 167–175.
DOI 10.1016/j.wasman.2005.03.006

Gondek, K., Kopec, M., Mierzwa, M., Tabak, M., Chmiel, M., 2014. Chemical and biological properties of composts produced from organic waste. J. Elementol. 19, 377–390.
DOI 10.5601/jelem.2014.19.2.670

Granatto, C.F., Macedo, T.Z., Gerosa, L.E., Sakamoto, I.K., Silva, E.L., Varesche, M.B.A., 2019. Scale-up evaluation of anaerobic degradation of linear alkylbenzene sulfonate from sanitary sewage in expanded granular sludge bed reactor. Int. Biodeterior. Biodegradation. 138, 23–32.
DOI 10.1016/j.ibiod.2018.12.010

Haarlemmer, G., Briand, M., Roubaud, A., Roussely J., Dénie M., 2018. Economic evaluation of a hydrothermal liquefaction process. Detritus. 3, 84-92.
DOI 10.31025/2611-4135/2018.13695

Hargreaves, A., Constantino, C., Dotro, G., Cartmell, E., Campo, P., 2018. Fate and removal of metals in municipal wastewater treatment: a review. Environ. Technol. Rev. 7, 1–18.
DOI 10.1080/21622515.2017.1423398

Hu, S., She, X., Wei, X., Hu, B., Hu, C., Qian, Y., Fang, Y., Zhang, X., Bashir, S., Chen, Z., 2017. Surplus sludge treatment in two sludge treatment beds under subtropical condition in China. Int. Biodeter. Biodegrad. 119, 377-386.
DOI 10.1016/j.ibiod.2016.11.005

Hue, N.V., 1995. Sewage sludge. Rechcigl J.E. (Ed.), Soil Amendments and Environmental Quality, Lewis Publishers, Florida, 199-247

Italian regulation, 2018. Legge n. 130 del 16/11/2018, articolo 41. https://www.gazzettaufficiale.it/eli/id/2018/09/28/18G00137/sg

Jensen, J., 1999. Fate and effects of linear alkylbenzene sulphonates (LAS) in the terrestrial environment. Sci. Total Environ. 226, 93–111.
DOI 10.1016/S0048-9697(98)00395-7

Kannan, K., Kawano, M., Kashima, Y., Matsui, M., Giesy, J.P., 1999. Extractable organohalogens (EOX) in sediment biota collected at an Estuarine March near a former chloroalkali facility. Environ. Sci. Technol. 33, 1004-1008.
DOI 10.1021/es9811142

Laura, F., Tamara, A., Muller, A., Hiroshan, H., Christina, D., Serena, C., 2020. Selecting sustainable sewage sludge reuse options through a systematic assessment framework: Methodology and case study in Latin America. J. Clean. Prod. 242, 118389.
DOI 10.1016/j.jclepro.2019.118389

Misson, G., Mainardis, M., Incerti, G., Goi, D., Peressotti, A., 2020. Preliminary evaluation of potential methane production from anaerobic digestion of beach-cast seagrass wrack: The case study of high-adriatic coast. J. Clean. Prod. 254, 120131.
DOI 10.1016/j.jclepro.2020.120131

Mortensen, G.K., Egsgaard, H., Ambus, P., Jensen, E.S., Grøn, C., 2001. Influence of Plant Growth on Degradation of Linear Alkylbenzene Sulfonate in Sludge-Amended Soil. J. Environ. Quality 30, 1266–1270.
DOI 10.2134/jeq2001.3041266x

Mtshali, J.S., Tiruneh, A.T., Fadiran, A.O., 2014. Characterization of Sewage Sludge Generated from Wastewater Treatment Plants in Swaziland in Relation to Agricultural Uses. Res. Environ. 4, 190-199.
DOI 10.5923/j.re.20140404.02

Mumma, R.D., Rashid, K.A., Raupach, D.C., Shane, B.S., Scarlet-Kranz, J.M., Bache, C.A., Gutenmann, W.H., Lisk D.J., 1988. Mutagens, toxicants, and other constituents in small city sludges in New York State. Arch. Environ. Contam. Toxicol. 17, 657.
DOI 10.1007/BF01055835

Niemirycz, E., Kaczmarczyk, A., Blažejowski, J., 2005. Extractable organic halogens (EOX) in sediments from selected Polish rivers and lakes–a measure of the quality of the inland water environment. Chemosphere 61, 92–97.
DOI 10.1016/j.chemosphere.2005.03.071

Pakhnenko E. P., Ermakov A. V., Ubugunov L. L. (2009) Influence of sewage sludge from sludge beds of Ulan-Ude on the soil properties and the yield and quality of potatoes. Moscow University Soil Science Bulletin. 64, 175–181.
DOI 10.3103/S0147687409040061

Pires, A.M.M., Mattiazzo, M.E., 2003. Bio solids conditioning and the availability of Cu and Zn for rice. Sci. Agric. 60, 161–166.
DOI 10.1590/S0103-90162003000100024

Quian, L., Wang, S., Xu, D., Guo, Y., Tang, X., Wang, L., 2016. Treatment of municipal sewage sludge in supercritical water: a review. Water Res. 89, 118-131.
DOI 10.1016/j.watres.2015.11.047

Reemtsma, T., Jekel, M., 1996. Potential of ethyl acetate in the determination of extractable organic halogens (EOX) from contaminated soil, sediment, and sewage sludge. Chemosphere 32, 815-826.
DOI 10.1016/0045-6535(95)00369-X

Rizzardini, C.B., Goi, D., 2014. Sustainability of Domestic Sewage Sludge Disposal. Sustainability 6, 2424–2434.
DOI 10.3390/su6052424

Rodziewicz, M., Kaczmarczyk, A., Niemirycz, E., 2004. Poly-chlorinated biphenyls in sediments of the Odra River and its tributaries. Polish J. Environ. Studies 13, 203–208

Romanos, D., Nemer, N., Khairallah, Y., Abi Saab, M.T., 2019. Assessing the quality of sewage sludge as an agricultural soil amendment in Mediterranean habitats. Int. J. Recy. Organ. Waste Agr. 8, 377-383.
DOI 10.1007/s40093-019-00310-x

Schowanek, D., David, H., Francaviglia, R., Hall, J., Kirchmann, H., Krogh, P.H., Schraepen, N., Smith, S., Wildemann, T., 2007. Probabilistic risk assessment for linear alkylbenzene sulfonate (LAS) in sewage sludge used on agricultural soil. Regulatory Toxicology and Pharmacology 49, 245-259.
DOI 10.1016/j.yrtph.2007.09.001

Singh, K.P., Mohan, D., Sinha, S., Dalwani, R., 2004. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere 55, 227–255.
DOI 10.1016/j.chemosphere.2003.10.050

Singh, R.P., Agrawal, M., 2008. Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347-358.
DOI 10.1016/j.wasman.2006.12.010

Sommers, L. E., 1977. Chemical composition of sewage sludges and analysis of their potential use as fertilizers. J. Environ. Quality 6(2), 225–232.
DOI 10.2134/jeq1977.00472425000600020026x

Sorme, L., Lagerkvist, R., 2002. Sources of heavy metals in urban wastewater in Stockholm. Sci. Tot. Environ. 298, 131–145.
DOI 10.1016/S0048-9697(02)00197-3

Spanos, T., Ene, A., Styliani Patronidou, C., Xatzixristou, C., 2016. Temporal variability of sewage sludge heavy metal content from Greek wastewater treatment plants. Ecol. Chem. Eng. S. 23, 271–283.
DOI 10.1515/eces-2016-0019

Stock, H.-D., Alberti, J., Reupert, R.R., Hoffmann-Nogai, C., Oberdörfer, M. und Delschen, T., 2002. Umweltrelevante Schadstoffe in Klärschlämmen, Dünger und Kompost in Nordrhein-Westfalen

Teoh, S.K., Li, L.Y., 2020. Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective. J. Clean. Prod. 247, 119495.
DOI 10.1016/j.jclepro.2019.119495

Vorkommen, Eigenschaften und Verhalten. In: 35. Essener Tagung für Wasser- und Abfallwirtschaft vom 20.3.-22.3.2002 in Essen. Teil II. (Dohmann M., Institut für Siedlungswasserwirtschaft der RWTH Aachen, (Hrsg.), S. 67/1-67/26

Stylianou, M., Inglezakis, V., Moustakas, K., Loizidou, M., 2008 Improvement of the quality of sewage sludge compost by adding natural clinoptilolite. Desalin. 224, 240–249.
DOI 10.1016/j.desal.2007.06.009

Tsybina, A., Wuensch, C., 2018 Analysis of sewage sludge thermal treatment Methods in the context of circular economy. Detritus. 2, 3-15.
DOI 10.31025/2611-4135/2018.13668

USEPA (1995). National Ambient Air Quality Standards. http://www.epa.gov/oagps001

Usman, K., Khan, S., Ghulam, S., Khan, M.U., Khan, N., Khan, M.A., Khalil, S. K., 2012. Sewage sludge: an important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci. 3, 1708–1721.
DOI 10.4236/ajps.2012.312209

Valentín, L., Nousiainen, A., Mikkonen, A., 2013. Introduction to Organic Contaminants in Soil: Concepts and Risks. In: Vicent T., Caminal G., Eljarrat E., Barceló D. (eds) Emerging Organic Contaminants in Sludges. The Handbook of Environmental Chemistry, vol 24. Springer, Berlin, Heidelberg

Villar, M., Callejon, M., Jimenez, J. C., Alonso, E., Guiraum, A., 2007. Optimization and validation of a new method for analysis of linear alkylbenzene sulfonates in sewage sludge by liquid chromatography after microwave-assisted extraction. Anal. Chim. Acta 599, 92–97.
DOI 10.1016/j.aca.2007.07.065

Yoshida, H., ten Hoeve, M., Christensen, T.H., Bruun, S., Jensen, L.S., Scheutz, C., 2018. Life cycle assessment of sewage sludge management options including long-term impacts after land application. J. Clean. Prod. 174, 538-547.
DOI 10.1016/j.jclepro.2017.10.175