an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Felix Aibuedefe Aisien - Department of Chemical Engineering, University of Benin, Nigeria
  • Eki Tina Aisien - Department of Environmental Management and Toxicology, University of Benin, Nigeria


Released under CC BY-NC-ND

Copyright: © 2022 CISA Publisher


ABSTRACT: The widely-used plastics, especially low-density polyethylene (LDPE), have resulted in a considerable accumulation of plastics in the waste stream, causing a global environmental problem. Therefore, the research aims to examine the thermal and catalytic degradation of waste LDPE plastic using spent fluid catalytic cracking (FCC) catalyst and compare the properties of the produced liquid oils with commercial fuels. The potential of converting the most energy from waste plastics to valuable liquid oil, gaseous, and char was investigated. A batch reactor was used to thermally and catalytically degrade LDPE at temperatures 350 to 550oC and catalyst to plastic ratio of 0.10 to 0.25. The physical properties of the produced liquid oils, flash point, pour point, viscosity, API-gravity, carbon residue, density, etc., were determined using standard methods. We characterized the chemical properties of produced pyrolysis liquid oils with Gas chromatography-mass spectrometry (GC-MS). The liquid oil, gas, and char produced at catalyst to plastic ratio of 0.20 at 500oC were 92.7 wt.%, 6.1 wt.%, and 1.2 wt.% respectively. The thermal pyrolysis at 500 oC gave 76.6 wt.%, 20.7 wt.%, and 2.7 wt.% for produced liquid oil, gas, and char, respectively. The GC-MS shows that the produced LDPE liquid oil contains many hydrocarbons from C7-C29. The major hydrocarbons common to LDPE are benzene, 1, 3 dimethyl benzene, and toluene. The produced liquid oil’s properties compare favorably with that of commercial fuels.


Editorial History

  • Received: 28 Jan 2022
  • Revised: 20 Jun 2022
  • Accepted: 20 Jun 2022
  • Available online: 30 Jun 2022


Abbas-Abadi, M.S, Haghighi, M.N., Yeganeh, H. 2013. Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor. Fuel Process Technol. 109, 90-95.
DOI 10.1016/j.fuproc.2012.09.042

Abbas-Abadi, M.S., Haghighi, M.N., Yeganeh, H., McDonald, A.G. 2014. Evaluation of pyrolysis process parameters on polypropylene degradation products. J Anal Appl Pyrolysis. 109, 272-277.
DOI 10.1016/j.jaap.2014.05.023

Ahmad, I., Khan, M.I., Khan, H., Ishaq, M., Tariq, R., Gul, K. et al., 2014. Pyrolysis study of polypropylene and polyethylene into premium oil products, Int. J. Green Energy 12, 663-671.
DOI 10.1080/15435075.2014.880146

Aisien, F.A., Amenaghawon, A.N., Adeboyejo, A.R. 2013. Application of recycled rubber from scrap tire in the removal of phenol from aqueous solution. Pacific Journal of Science and Technology. 14 (2), 330-341.
DOI 10.4314/jasem.v17i3.10

Aisien, E.T., Otuya, I.C., Aisien, F.A. 2021. Thermal and catalytic pyrolysis of waste polypropylene plastic using spent FCC catalyst, Envion. Technol. Inno. 22, 101455.
DOI 10.1016/j.eti.2021.101455

Al-Salem, S.M., Antelava, A., Constantinou, A., Manos, G., Dutta, A. 2017. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environ. Manage. 197, 177-198.
DOI 10.1016/j.jenvman.2017.03.084

Bozbas, K. 2008. Biodiesel as an alternative motor fuel: production and policies in the European union. Renew Sustain Energy Rev.,12, 542-552. .
DOI 10.1016/j.rser.2005.06.001

Brunauer, S., Emmett, P.H., Teller, E.1938. Adsorption of gases in multimolecular layers, J. Am.Chem. Soc, 60, 309-319

Budsaereechai, S., Andrew J.H., Ngernyen, H. 2019. Catalytic pyrolysis of plastic waste for the reduction of liquid fuels for engines. Royal Society Chem. Adv. 9, 5844-5857.
DOI 10.1039/c8ra10058f

Chen, X., Ren, L., Yaseen, M., Wang, L., Liang, J., Linang, R., Chen, X., Guo, H., 2019. RSC Adv., 9, 6515-6525.
DOI 10.1039/c8ra07943a

Chin, B.L.F., Yusup, S., Al Shoaibi, A., Kannan, P., Srinivasakannan, C., Sulaiman, S.A. 2014. Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Energy Convers Manage 87, 746-753.
DOI 10.1016/j.enconman.2014.07.043

Costa, P., Pinto, F., Ramos, A.M., Gulyurtlu, I., Cabrita, I., Bernardo, M.S. 2010. Study of the pyrolysis kinetics of a mixture of polyethylene, polypropylene, and polystyrene. Energy & Fuels, 24(12): 6239-6247.
DOI 10.1021/ef101010n

Demirbas, A. 2004. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. J Anal Appl Pyrolysis. 72, 97-102.
DOI 10.1016/j.jaap.2004.03.001

Gaurh, P., Pramanik, H. 2018. Production and characterization of pyrolysis oil using waste polyethylene in a semi-batch reactor. Indian J. of Chem. Techn. 25, 336-344

Gregg, S., Sing, K. 1982. Adsorption, surface area and porosity. Academic Press, London, Adsorption, surface area and porosity. 2nd ed. Academic Press, London

Hernandez, M. R., Gomez, A., García, A. N., Agullo, J., Marcilla, A. 2007. Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE, Appl. Catal. A: General, 317, 183.
DOI 10.1016/j.apcata.2006.10.017

Jung, S.H., Cho, M.H., Kang, B. S., Kim, J.S. 2010. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process. Technol. 91, 277-284.
DOI 10.1016/j.fuproc.2009.10.009

Kruskai, W.H., Wallis, W.A. 1952. Use of ranks in one-crition variance analysis J. Am. Stat. Assoc. 47: 260, 583-621.
DOI 10.1080/01621459.1952.10483441

Kunwar, B., Cheng, H.N., Chandrashekaran, S.R., Sharma, B.K. 2016. Plastics to fuel: A review. Renew. Sustain. Energy Rev. 54, 421-428.
DOI 10.1016/j.rser.2015.10.015

Kyong, H.L., Nam, S.N., Dae, H.S., Seo, Y. 2002. Comparison of plastic types for catalytic degradation of waste plastics into liquid product with spent FCC catalyst. Polym. Degrad. Stab. 78:539-544

Kyong, H.L., Sang, G.J., Kwang, H.K., Nam, S.N., Dae, H.S., Park, J. et al., 2003. Thermal and catalytic degradation of waste high-density polyethylene (HDPE) using spent FCC catalyst. Korean J. Chem. Eng. 20: 693-697

López, G., Artetxe, M., Amutio, M., Bilbao, J., Olazar, M. 2017. Thermochemical routes for the valorization of waste

polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 73, 346-368.
DOI 10.1016/j.rser.2017.01.142

Mabood, F., Jan, M.R., Shah, J., Jabeen, F., Hussain, Z. 2010. Catalytic conversion of waste low-density polyethylene into fuel oil. J. Iran. Chem. Res. 3, 121-131

Marcilla, A., Beltrán, M. I., Navarro, R.A. 2009. Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl. Catal. B: Environ. 86, 78-86.
DOI 10.1016/j.apcatb.2008.07.026

Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Nizami, A.S. 2016. Catalytic pyrolysis of plastic waste: A review. Process. Saf. Environ. Prot. 102, 822-838.
DOI 10.1016/j.psep.2016.06.022

Miandad, R., Rehan, M., Barakat, M.A., Aburiazaiza, A.S., Khan, H., Ismail, I.M.I., Dhavamani, J., Gardy, J., Hassanpour, A., Nizami, A.S. 2019. Catalytic pyrolysis of plastic waste: Moving toward pyrolysis-based biorefineries. Front. Energy Res. 7:27.
DOI 10.3389/fenrg.2019.00027

Moorthy Rajendran, K., Chintala, V., Sharma, A., Pal, S., Pandey, J.K., Ghodke, P. 2020. Review of catalyst materials in achieving the liquid hydrocarbon fuels from municipal mixed plastic waste (MMPW). Mater Today Commun. 24, 100982.
DOI 10.1016/j.mtcomm.2020.100982

Onwudili, J.A., Insura, N., Williams, P.T. 2009. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time. J. Anal. Appl. Pyrol. 86, 293-303.
DOI 10.1016/j.jaap.2009.07.008

Onwudili, J.A., Muhammad, C., Williams, P.T. 2019. Influence of catalyst bed temperature and properties of zeolite catalysts on pyrolysis-catalysis of a simulated mixed plastics sample for the production of upgraded fuels and chemicals. J. Energy Inst. 92, 1337-1347.
DOI 10.1016/J.JOEI.2018.10.001

Patni, N., Shah, P., Agarwal, S., Singhal, P. 2013. Alternate Strategies for Conversion of Waste Plastic to Fuels. ISRN Renewable Energy. 2013, 1-7.
DOI 10.1155/5917

Sakata, Y., Uddin, M.A., Muto, A. 1999. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-solid acid catalysts. J Anal Appl Pyrolysis. 51, 135-155.
DOI 10.1016/S0165-2370(99)00013-3

Santaweesuk, C., Janyalertadun, A. 2017. The Production of Fuel Oil by Conventional Slow Pyrolysis Using Plastic Waste from a Municipal Landfill International Journal of Environ. Sci. Dev., Vol. 8, No. 3,168-173.
DOI 10.18178/IJESD.2017.8.3.941

Santos, B.P.S., Almeida, D., Marques, M.F.V., Henriques, C.A. 2018. Petrochemical feedstock from pyrolysis of waste polyethylene and polypropylene using different catalysts. Fuel 215, 515-521.
DOI 10.1016/j.fuel.2017.11.104

Saptoadi, H., Pratama, N.N., 2015. Utilization of plastics wastes oil as a partial substitute for kerosene in pressurized cookstoves. Int. J. Environ. Sci. Dev. 6, 363-371.
DOI 10.7763/IJESD.2015.V6

Shah, J., Jan, M.R. 2014. Conversion of waste polystyrene through catalytic degradation into valuable products. Korean J. Chem. Eng. 31, 1389-1398.
DOI 10.1007/s11814-014-0016-4

Sarker, M., Rashid, M.M. 2013. A waste plastic mixture of polystyrene and polypropylene into light grade fuel using

Fe2O3 catalyst. Intern. J. Renewable Energy Tech. Res. 2(1), 17-28

Shakirullah, M., Ahmad, I., Ahmad, W., Ishaq, M. 2010. Oxidative desulphurization study of gasoline and kerosene: Role of some organic and inorganic oxidants. Fuel Proc.Technol., 91(11): 1736-1741

DOI 10.1016/j.fuproc.2010.07.014

Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W., Aroua, M.K. 2016. A review on pyrolysis of plastic wastes. Energy Convers. Manage, 115, 308-326.
DOI 10.1016/j.enconman.2016.02.037

Shimadzu. 2011. Analysis of gasoline using GC/MS. 21, 20-21

Singh, M.V., Kumar, S., Sarkerb, M. 2018. Waste HD-PE plastic, deformation into liquid hydrocarbon fuel using pyrolysis-catalytic cracking with a CuCO3 catalyst Sustainable Energy Fuels. 2, 1057-1068

DOI 10.1039/C8SE00040A

Sosa, O., Valin, S., Thiery, S., Salvador, S. 2021. Pyrolysis of solid waste and its components in a lab scale induction-heating reactor. Detritus 15, 107-112.
DOI 10.31025/2611-4135/2021.15094

Susastriawan, A.A.P., Purnomo, Sandria, A. 2020. Experimental study of the influence of zeolite size on low-temperature pyrolysis of low-density polyethylene plastic waste. Therm. Sci. Eng. Prog.17, 100497.
DOI 10.1016/j.tsep.2020.100497

Syamsiro, M., Cheng, S., Hu,W., Saptoadi, H., Pratama, N.N., Trisunaryanti, W., et al., 2014. Liquid and gaseous fuel from waste plastics by sequential pyrolysis and catalytic reforming processes over Indonesian natural zeolite catalysts. Waste Technol. 2, 44-51.
DOI 10.12777/wastech.2.2.44-51


    Rainer Stegmann

    Published 30 Jun 2022

    Alberto Pivato, Giovanni Beggio, Tiziano Bonato, Luciano Butti, Luciano Cavani, Claudio Ciavatta, Francesco Di Maria, Rosario Ferrara, Paola Grenni, Oskar Johansson, Lorenzo Maggi, Anna Mazzi, Wei Peng, Federico Peres, Maria Pettersson and Andrea Schievano and George Varghese

    Published 30 Jun 2022

    Nils Johansson

    Published 30 Jun 2022