an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

INCREASING THE DIMENSIONAL STABILITY OF CAO-FEOX-AL2O3-SIO2 ALKALI-ACTIVATED MATERIALS: ON THE SWELLING POTENTIAL OF CALCIUM OXIDE-RICH ADMIXTURES

  • Guilherme Ascensão - Italcementi SpA, Italy
  • Maurizio Marchi - Italcementi SpA, Italy
  • Monica Segata - Italcementi SpA, Italy
  • Flora Faleschini - Department of Civil, Environmental and Architectural Engineering, University of Padova, Italy
  • Yiannis Pontikes - KU Leuven, Belgium

DOI 10.31025/2611-4135/2019.13880

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher

Editorial History

  • Received: 01 Jul 2019
  • Revised: 14 Oct 2019
  • Accepted: 28 Oct 2019
  • Available online: 23 Dec 2019

Abstract

Advanced thermochemical conversion processes are emerging technologies for materials’ recovery and energetic conversion of wastes. During these processes, a (semi-)vitreous material is also produced, and as these technologies get closer to maturity and full-scale implementation, significant volumes of these secondary outputs are expected to be generated. The production of building materials through the alkali activation of such residues is often identified as a possible large-scale valorization route, but the high susceptibility of alkali-activated materials (AAM) to shrinkage limits their attractiveness to the construction sector. Aiming to mitigate such a phenomenon, an experimental study was conducted investigating the effect of calcium oxide-rich admixtures on the dimensional stability of CaO-FeOx-Al2O3-SiO2 AAMs. This work describes the impacts of such admixtures on autogenous and drying shrinkage, porosity, microstructure, and mineralogy on AAMs. Drying shrinkage was identified as the governing mechanism affecting AAM volumetric stability, whereas autogenous shrinkage was less significant. The reference pastes presented the highest drying shrinkage, while increasing the dosage of shrinkage reducing agent (SRA) was found to reduce drying shrinkage up to 63%. The reduction of drying shrinkage was proportional to SRA content; however, elevated dosages of such admixture were found to be detrimental for AAM microstructure. On the other hand, small dosages of calcium oxide-rich admixtures did not induce significant changes in the samples’ mineralogical evolution but promoted the formation of denser and less fractured microstructures. The results presented here show that calcium oxide-rich admixtures can be used to increase AAM’s volumetric stability and an optimal dosage is prescribed.

Keywords


References

Ascensão, G., Seabra, M. P., Aguiar, J. B., & Labrincha, J. A. (2017). Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability. Journal of Cleaner Production, 148, 23-30.
DOI 10.1016/j.jclepro.2017.01.150

Ascensão, G., Marchi, M., Segata, M., Faleschini, F., & Pontikes, Y. (2019a). Reaction kinetics and structural analysis of alkali activated Fe-Si-Ca rich materials. Journal of Cleaner Production, 119065.
DOI 10.1016/j.jclepro.2019.119065

Ascensão, G., Faleschini, F., Marchi, M. Segata, M. & Y Pontikes, Y. (2019b). The effect of calcium-rich admixture on controlling drying shrinkage of alkali activated materials. In Proceedings of the 6th International Slag Valorisation Symposium (pp. 403-406)

British Standards Institution, BS EN 12617–4:2002 Products and systems for the protection and repair of concrete structures. Test methods, Determination of Shrinkage and Expansion, Milton Keynes, UK, 2002, p. 14

Cartwright, C., Rajabipour, F., & Radlińska, A. (2014). Shrinkage characteristics of alkali-activated slag cements. Journal of materials in civil engineering, 27(7), B4014007.
DOI 10.1061/(ASCE)MT.1943-5533.0001058

Chanvillard, G., Boivin, S., Thierry, J., Guimbal, F., Garcia, D. (2007). U.S. Patent No. 20090305019A1. Washington, DC: U.S. Patent and Trademark Office.Chen, W., & Brouwers, H. J. H. (2012). Hydration of mineral shrinkage-compensating admixture for concrete: An experimental and numerical study. Construction and building materials, 26(1), 670-676.
DOI 10.1016/j.conbuildmat.2011.06.070

Collins, F., & Sanjayan, J. G. (2000). Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research, 30(9), 1401-1406.
DOI 10.1016/S0008-8846(00)00327-6

Corinaldesi, V., Donnini, J., & Nardinocchi, A. (2015). The influence of calcium oxide addition on properties of fiber reinforced cement-based composites. Journal of Building Engineering, 4, 14-20.
DOI 10.1016/j.jobe.2015.07.009

Daux, V., Guy, C., Advocat, T., Crovisier, J. L., & Stille, P. (1997). Kinetic aspects of basaltic glass dissolution at 90 C: role of aqueous silicon and aluminium. Chemical Geology, 142(1-2), 109-126.
DOI 10.1016/S0009-2541(97)00079-X

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. (2007). Geopolymer technology: the current state of the art. Journal of materials science, 42(9), 2917-2933.
DOI 10.1007/s10853-006-0637-z

Gomes, K. C., Lima, G. S., Torres, S. M., de Barros, S. R., Vasconcelos, I. F., & Barbosa, N. P. (2010). Iron distribution in geopolymer with ferromagnetic rich precursor. In Materials Science Forum (Vol. 643, pp. 131-138). Trans Tech Publications.
DOI 10.4028/www.scientific.net/MSF.643.131

Guo, X., & Shi, H. (2015). Metakaolin-, fly ash-and calcium hydroxide-based geopolymers: effects of calcium on performance. Advances in Cement Research, 27(10), 559-566.
DOI 10.1680/jadcr.14.00081

ISO 9277:2010 -Determination of the specific surface area of solids by gas adsorption - BET method

Jensen, O. M., & Hansen, P. F. (2001). Autogenous deformation and RH-change in perspective. Cement and Concrete Research, 31(12), 1859-1865.
DOI 10.1016/S0008-8846(01)00501-4

Kellermeier, M., Melero-Garcia, E., Glaab, F., Klein, R., Drechsler, M., Rachel, R., ... & Kunz, W. (2010). Stabilization of amorphous calcium carbonate in inorganic silica-rich environments. Journal of the American Chemical Society, 132(50), 17859-17866.
DOI 10.1021/ja106959p

Komnitsas, K., Bartzas, G., Karmali, V., Petrakis, E., Kurylak, W., Pietek, G., & Kanasiewicz, J. (2019). Assessment of Alkali Activation Potential of a Polish Ferronickel Slag. Sustainability, 11(7), 1863.
DOI 10.3390/su11071863

Lakshtanov, L. Z., & Stipp, S. L. S. (2009). Silica influence on calcium carbonate precipitation. Geochimica et Cosmochimica Acta Supplement, 73, A716. 2009GeCAS..73Q.716L

Lee, N. K., Jang, J. G., & Lee, H. K. (2014). Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cement and Concrete Composites, 53, 239-248.
DOI 10.1016/j.cemconcomp.2014.07.007

Machiels, L., Arnout, L., Jones, P. T., Blanpain, B., & Pontikes, Y. (2014). Inorganic polymer cement from Fe-silicate glasses: varying the activating solution to glass ratio. Waste and Biomass Valorization, 5(3), 411-428.
DOI 10.1007/s12649-014-9296-5

Machiels, L., Arnout, L., Yan, P., Jones, P. T., Blanpain, B., & Pontikes, Y. (2017). Transforming enhanced landfill mining derived gasification/vitrification glass into low-carbon inorganic polymer binders and building products. Journal of Sustainable Metallurgy, 3(2), 405-415.
DOI 10.1007/s40831-016-0105-1

Mastali, M., Kinnunen, P., Dalvand, A., Firouz, R. M., & Illikainen, M. (2018). Drying shrinkage in alkali-activated binders–a critical review. Construction and Building Materials, 190, 533-550.
DOI 10.1016/j.conbuildmat.2018.09.125

Mounanga, P., Bouasker, M., Pertue, A., Perronnet, A., & Khelidj, A. (2011). Early-age autogenous cracking of cementitious matrices: physico-chemical analysis and micro/macro investigations. Materials and structures, 44(4), 749-772.
DOI 10.1617/s11527-010-9663-z

Neto, A. A. M., Cincotto, M. A., & Repette, W. (2008). Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cement and Concrete Research, 38(4), 565-574.
DOI 10.1016/j.cemconres.2007.11.002

Ono, Y., Taketsume, Y., Ogura, H., Takizawa, T. (1997). U.S. Patent No. 3801339A. Washington, DC: U.S. Patent and Trademark Office

Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A., & Chindaprasit, P. (Eds.). (2014). Handbook of alkali-activated cements, mortars and concretes. Elsevier

Onisei, S., Lesage, K., Blanpain, B., & Pontikes, Y. (2015). Early age microstructural transformations of an inorganic polymer made of fayalite slag. Journal of the American Ceramic Society, 98(7), 2269-2277.
DOI 10.1111/jace.13548

Peys, A., White, C. E., Rahier, H., Blanpain, B., & Pontikes, Y. (2019). Alkali-activation of CaO-FeOx-SiO2 slag: Formation mechanism from in-situ X-ray total scattering. Cement and Concrete Research, 122, 179-188.
DOI 10.1016/j.cemconres.2019.04.019

Provis, J. L. (2014). Geopolymers and other alkali activated materials: why, how, and what?. Materials and Structures, 47(1-2), 11-25.
DOI 10.1617/s11527-013-0211-5

Sakulich, A. R., & Bentz, D. P. (2013). Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing. Materials and structures, 46(8), 1355-1367.
DOI 10.1617/s11527-012-9978-z

Salman, M., Cizer, Ö., Pontikes, Y., Snellings, R., Vandewalle, L., Blanpain, B., & Van Balen, K. (2015). Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions. Journal of hazardous materials, 286, 211-219.
DOI 10.1016/j.jhazmat.2014.12.046

Simon, S., Gluth, G. J., Peys, A., Onisei, S., Banerjee, D., & Pontikes, Y. (2018). The fate of iron during the alkali‐activation of synthetic (CaO‐) FeOx‐SiO2 slags: An Fe K‐edge XANES study. Journal of the American Ceramic Society, 101(5), 2107-2118.
DOI 10.1111/jace.15354

Thomas, R. J., Lezama, D., & Peethamparan, S. (2017). On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing. Cement and Concrete Research, 91, 13-23.
DOI 10.1016/j.cemconres.2016.10.003

Van Deventer, J. S. J., Provis, J. L., Duxson, P., & Lukey, G. C. (2007). Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 139(3), 506-513.
DOI 10.1016/j.jhazmat.2006.02.044

Velandia, D. F., Lynsdale, C. J., Provis, J. L., Ramirez, F., & Gomez, A. C. (2016). Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes. Construction and Building Materials, 128, 248-255.
DOI 10.1016/j.conbuildmat.2016.10.076

Yang, L., Shi, C., & Wu, Z. (2019). Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete–A review. Composites Part B: Engineering, 107456.
DOI 10.1016/j.compositesb.2019.107456


nov
18
nov
16