an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Longinus Ifeanyi Igbojionu - Institute of Research in Bioenergy (IPBEN) , São Paulo State University (UNESP) , Brazil
  • Cecilia Laluce - Institute of Research in Bioenergy (IPBEN) , São Paulo State University (UNESP) , Brazil
  • Edison Pecoraro - Department of General and Inorganic Chemistry , São Paulo State University (UNESP) , Brazil

DOI 10.31025/2611-4135/2020.14005

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher

Editorial History

  • Received: 05 Nov 2019
  • Revised: 06 Apr 2020
  • Accepted: 05 Jun 2020
  • Available online: 07 Sep 2020


Sugarcane bagasse (SB) is made up of cellulose (32-43%), hemicellulose (19-34%) and lignin (14-30%). Due to high recalcitrant nature of SB, pretreatment is required to deconstruct its structure and enrich the cellulosic fraction. A two-stage NaOH and maleic acid pretreatment was applied to SB to enrich its cellulosic fraction. SB used in the present study is composed of cellulose (40.4 wt%), hemicellulose (20.9 wt%), lignin (22.5 wt%) and ash (4.0 wt%). After one-stage NaOH pretreatment, its cellulosic fraction increased to 61.8 wt% and later increased to 80.1 wt% after the second-stage acid pretreatment. Lignin fraction decreased to 3.0 wt% after one-stage NaOH pretreatment and remained unaffected after the acid pretreatment step. Hemicellulose fraction decreased substantially after the second-stage pretreatment with maleic acid. Pretreated SB displayed high crystallinity index and improved enzymatic digestibility. Hydrolysates of pretreated SB contained very low amount of xylose and subsequent fermentation by Saccharomyces cerevisiae -IQAr/45-1 resulted to ethanol level of 8.94 g/L. Maximal ethanol yield of 0.49 g/g (95.8% of theoretical yield) and productivity of 0.28 g/L/h was attained. At the same time, biomass yield and productivity of 0.47 g/g and 0.27 g/L/h respectively were obtained. Two-stage NaOH and maleic acid pretreatment led to ~ two-fold increase in cellulosic fraction and enhanced the enzymatic digestibility of SB up to 70.4%. The resulted enzymatic hydrolysate was efficiently utilized by S. cerevisiae -IQAr/45-1 to produce high yield of ethanol. Thus, optimization of enzymatic hydrolysis at low enzyme loading is expected to further improve the process and reduce cost.



Acharjee, T.C., Jiang, Z.H., Haynes, R.D. and Lee, Y.Y., (2017). Evaluation of chlorine dioxide as a supplementary pretreatment reagent for lignocellulosic biomass. Bioresour Technol. 244, 1049-1054.
DOI 10.1016/j.biortech.2017.08.038

Álvarez, C., Reyes‐Sosa, F. M., Díez, B., 2016. Enzymatic hydrolysis of biomass from wood. Microb. Biotechnol. 9, 149-156.
DOI 10.1111/1751-7915.12346

Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., Kalita, E., 2018. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front. Energy Res. 6, 141.
DOI 10.3389/fenrg.2018.00141

Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K.U., Sukumaran, R.K., Pandey, A., 2012. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew energy. 37, 109-116.
DOI 10.1016/j.renene.2011.06.007

Brienzo, M., Carvalho, A. F. A., de Figueiredo, F. C., de Oliva Neto, P. 2016. Sugarcane bagasse hemicellulose properties, extraction technologies and xylooligosaccharides production. Food waste: Practices, management and challenges, 155-188

Caputi, A., Ueda, M., & Brown, T. (1968). Spectrophotometric determination of ethanol in wine. American Journal of Enology and Viticulture, 19(3), 160-165

Chandel A.K., Antunes, F.A., Anjos, V., Bell, M.J., Rodrigues, L.N., Polikarpov, I., da Silva, S. S., 2014. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels. 7, 63.
DOI 10.1186/1754-6834-7-63

Chandel, A.K., da Silva, S.S., Carvalho, W., Singh, O.V., 2012. Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio‐products. J. Chem. Technol. Biotechnol. 87, 11-20.
DOI 10.1002/jctb.2742

Chang, C.W. and Webb, C., 2017. Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing. Bioresour. Technol. 227, 35-43.
DOI 10.1016/j.biortech.2016.12.055

de Albuquerque Wanderley, M. C., Martín, C., de Moraes Rocha, G. J., Gouveia, E. R., 2013. Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresour. Technol. 128, 448-453.
DOI 10.1016/j.biortech.2012.10.131

Eberts, T.J., Sample, R.H., Glick, M.R., Ellis, G.H., 1979. A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol. Clin. Chem. 25, 1440-1443

Girolamo, G. D., Grigatti, M., Bertin, L., Ciavatta, C., Barbanti, L. (2016). Enhanced substrate degradation and methane yield with maleic acid pre-treatments in biomass crops and residues. Biomass Bioenerg. 85, 306-312.
DOI 10.1016/j.biombioe.2015.12.029

Guilherme, A.A., Dantas, P.V.F., Santos, E.S., Fernandes, F.A.N. , acedo, G.R., 2015. Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz. J. Chem. Eng. 32, 23-33.
DOI 10.1590/0104-6632.20150321s00003146

Isaac, A., de Paula, J., Viana, C.M., Henriques, A.B., Malachias, A., Montoro, L.A., 2018. From nano- to micrometer scale: the role of microwave-assisted acid and alkali pretreatments in the sugarcane biomass structure. Biotechnol. Biofuels. 11, 73-84.
DOI 10.1186/s13068-018-1071-6

Jönsson, L. J., Martín, C., 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103-112.
DOI 10.1016/j.biortech.2015.10.009

Jung, Y. H., Kim, I. J., Kim, H. K., Kim, K. H. 2014. Whole slurry fermentation of maleic acid-pretreated oil palm empty fruit bunches for ethanol production not necessitating a detoxification process. Bioprocess Biosyst. Eng. 37, 659-665.
DOI 10.1007/s00449-013-1035-y

Karunarathna, M. S., Smith, R. C., 2020. Valorization of Lignin as a Sustainable Component of Structural Materials and Composites: Advances from 2011 to 2019. Sustainability. 12, 734-749.
DOI 10.3390/su12020734

Kucharska, K., Słupek, E., Cieśliński, H., Kamiński, M., 2020. Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes. Chemical Papers. 74, 1199-1209.
DOI 10.1007/s11696-019-00960-1

Laluce, C., Igbojionu, L.I., Silva, J.L., Ribeiro, C.A., 2019a. Statistical prediction of interactions between low concentrations of inhibitors on yeast cells responses added to the SD-medium at low pH values. Biotechnol. Biofuels 12,114-124.
DOI 10.1186/s13068-019-1453-4

Laluce, C., Roldan, I.U., Pecoraro, E., Igbojionu, L.I., Ribeiro, C.A., 2019b. Effects of pretreatment applied to sugarcane bagasse on composition and morphology of cellulosic fractions. Biomass Bioenerg. 126, 231-238.
DOI 10.1016/j.biombioe.2019.03.002

Laluce, C., Morais, M.R., Masiero, M.O.C., Longo, E., 2013. Advantages of using the hybrid strain IQAR/45-1 of Saccharomyces cerevisiae for growth and ethanol production at sub-lethal temperatures. Proc. Int. Soc. Sugar Cane Technol. 28, 356-358

Lau, M.W., Dale, M.E., 2009. Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proc. Natl. Acad. Sci. 106, 1368-1373.
DOI 10.1073/pnas.0812364106

Lee, H. V., Hamid, S. B. A., Zain, S. K., 2014. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. Sci. World J. 2014. 1-20.
DOI 10.1155/2014/63101

Li, P., Cai, D., Luo, Z., Qin, P., Chen, C., Wang, Y., et al. 2016. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresour. Technol. 206, 86-92.
DOI 10.1016/j.biortech.2016.01.077

Martinez, A., Rodriguez, M.E., York, S.W., Preston, J.F., Ingram L.O., 2000. Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol. Prog. 16, 637-641.
DOI 10.1021/bp0000508

Matsakas L., Nitsos C., Raghavendran V., Yakimenko O., Persson G., Olsson E., Rova U., Olsson L., Christakopoulos P., 2018. A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol. Biofuels.11,160-169.
DOI 10.1186/s13068-018-1163-3

Mohapatra S., Mishra C., Behera S. S., Thatoi H., 2017. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass -A review. Renew. Sustain. Energy Rev. 78, 1007-1032.
DOI 10.1016/j.rser.2017.05.026

Naik S. N., Goud V. V., Rout P. K., Jacobson K., and Dalai A. K., 2010. Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energy. 35, 1624-1631.
DOI 10.1016/j.renene.2009.08.033

Palmowski, L.M., Müller, J.A., 2000. Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci. Technol. 41, 155-162.
DOI 10.2166/wst.2000.0067

Qiao, H., Cui, J., Ouyang, S., Shi, J., Ouyang, J., 2019. Comparison of Dilute Organic Acid Pretreatment and a Comprehensive Exploration of Citric Acid Pretreatment on Corn Cob. J. Renew. Mater. 7, 1197-1207

Rabelo, S.C., Maciel Filho, R., Costa, A.C., 2009. Lime pretreatment of sugarcane bagasse for bioethanol production. Appl. Biochem. Biotechnol. 153, 139-150.
DOI 10.1007/s12010-008-8433-7

Rezende, C. A., de Lima, M. A., Maziero, P., deAzevedo, E. R., Garcia, W., Polikarpov, I., 2011. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels. 4, 54.
DOI 10.1186/1754-6834-4-54

Rodrigues, F.G., Assunção, R.M.N., Vieira, J.G., Meireles, C.S., Cerqueira, D.A., Barud, H.S., Ribeiro, S.J.L., Messaddeq Y., 2007. Characterization of methylcellulose produced from sugar cane bagasse cellulose: Crystallinity and thermal properties. Polym. Degrad. Stab. 92, 205-210.
DOI 10.1016/j.polymdegradstab.2006.11.008

Rongpipi, S., Ye, D., Gomez, E. D., Gomez, E. W., 2019. Progress and opportunities in the characterization of cellulose-an important regulator of cell wall growth and mechanics. Front. Plant Sci. 9, 1894-1921.
DOI 10.3389/fpls.2018.01894

Sabanci, K., Buyukkileci, A.Q., 2018. Comparison of liquid hot water, very dilute acid and alkali treatments for enhancing enzymatic digestibility of hazelnut tree pruning residues. Bioresour. Technol. 261,158-65.
DOI 10.1016/j.biortech.2018.03.136

Sasmal S., Goud V. V., and Mohanty K., 2012. Characterization of biomasses available in the region of North-East India for production of biofuels. Biomass Bioenerg. 45, 212-220.
DOI 10.1016/j.biombioe.2012.06.008

Segal L., Creely, J.J., Martin, A.E., Conrad C.M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res. J. 29, 764-786.
DOI 10.1177/004051755902901003

Silveira M.H.L., Morais A.R.C., Lopes A.M.D., Olekszyszen D.N., Bogel-Lukasik R., Andreaus J, Ramos L.P., 2015. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. Chemsuschem. 8, 3366-90.
DOI 10.1002/cssc.201500282

Singh S., Cheng G., Sathitsuksanoh S., Wu D., Varanasi P., George A., Balan V., Gao Xi, Kumar R., Dale B.E., Wyman C.E., Simmons B.A., 2015. Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res. 2, 62-73.
DOI 10.3389/fenrg.2014.00062

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2008. Determination of structural carbohydrates and lignin in biomass. LAP. 1617, 1-16. NREL/TP-510-42618

Sporck, D., Reinoso, F.A., Rencoret, J., Gutiérrez, A., José, C., Ferraz, A., Milagres, A.M., 2017. Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnol. Biofuels. 10, 296-307.
DOI 10.1186/s13068-017-0981-z

Sun, J.X., Sun, X.F., Sun, R.C., Su, Y.Q., 2004. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr. Polym. 56, 195-204.
DOI 10.1016/j.carbpol.2004.02.002

Sun, S.L., Sun, S.N., Wen, J.L., Zhang, X.M., Peng, F., Sun, R.C., 2015. Assessment of integrated process based on hydrothermal and alkaline treatments for enzymatic saccharifcation of sweet sorghum stems. Bioresour. Technol. 175, 473-9.
DOI 10.1016/j.biortech.2014.10.111

Thite, V. S., Nerurkar, A. S., 2019. Valorization of sugarcane bagasse by chemical pretreatment and enzyme mediated deconstruction. Scientific reports. 9, 1-14.
DOI 10.1038/s41598-019-52347-7

Timung, R., Naik Deshavath, N., Goud, V. V., Dasu, V. V., 2016. Effect of subsequent dilute acid and enzymatic hydrolysis on reducing sugar production from sugarcane bagasse and spent citronella biomass. J. Energy. 2016, 1-12.
DOI 10.1155/2016/8506214

Wi, S. G., Cho, E. J., Lee, D. S., Lee, S. J., Lee, Y. J., Bae, H. J., 2015. Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol. Biofuels. 8, 228.
DOI 10.1186/s13068-015-0419-4

Zhang, H., Wei, W., Zhang, J., Huang, S., Xie, J., 2018. Enhancing enzymatic saccharification of sugarcane bagasse by combinatorial pretreatment and Tween 80. Biotechnol. Biofuels. 11, 309-321.
DOI 10.1186/s13068-018-1313-7

Zhang, T., Zheng, Y., Cosgrove, D.J., 2016. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J. 85, 179-192.
DOI 10.1111/tpj.13102

Zhao, D., Li, Y.R., 2015. Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy, 2015.
DOI 10.1155/2015/547386

Zheng, Q., Zhou, T., Wang, Y., Cao, X., Wu, S., Zhao, M., Guan, X., 2018. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci. Rep. 8, 1-9.
DOI 10.1038/s41598-018-19517-5