an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

HIGH TEMPERATURE CORROSION AND DIOXIN ABATEMENT USING SULFUR RECIRCULATION IN A WASTE-TO-ENERGY PLANT

  • Sven Andersson - Babcock&Wilcox Vølund AB , Sweden - Environmental Inorganic Chemistry , Chalmers tekniska hogskola Institutionen for kemi- och bioteknik , Sweden
  • Maria Dolores Paz - Environmental Inorganic Chemistry , Chalmers tekniska hogskola Institutionen for kemi- och bioteknik , Sweden
  • Julien Phother-Simon - Environmental Inorganic Chemistry , Chalmers tekniska hogskola Institutionen for kemi- och bioteknik , Sweden
  • Torbjörn Jonsson - Environmental Inorganic Chemistry , Chalmers tekniska hogskola Institutionen for kemi- och bioteknik , Sweden

DOI 10.31025/2611-4135/2019.13784

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher

Editorial History

  • Received: 30 Nov 2018
  • Revised: 31 Jan 2019
  • Accepted: 20 Feb 2019
  • Available online: 31 Mar 2019

Abstract

Sulfur Recirculation is a novel technique for reducing the high temperature corrosion and dioxin formation in Waste-to-Energy plants by recirculating sulfur from the wet flue gas cleaning back to the boiler. This is achieved by separating SO2 from the flue gas in a wet scrubber downstream of a HCl scrubber. H2O2 dosed into the scrubber reacts with SO2 in the gas and produces a 15-25wt% H2SO4 solution, which is injected into the boiler producing SO2, thus creating a sulfur loop. The first permanent full-scale installation has been in operation in one of the two commercial full-scale Waste-to Energy boilers at Maabjerg Energy Center (MEC) in Denmark since October 2016. The recirculated sulfur increased the gas concentration of SO2 by a factor of 2-3 in the boiler, thereby enhancing the sulfation of corrosive alkali chlorides to non-corrosive alkali sulfates. The chlorine content of the superheater deposits decreased by 85%, and the super¬heater corrosion rate decreased by 40-90% during the first year of operation. The dioxin concentrations upstream of the dioxin removal system decreased by 75% and the dioxin emissions decreased by 72% with Sulfur Recirculation in operation. Furthermore, the sulfate containing effluent water was almost eliminated due to the increased sulfation of the ashes and deposits.

Keywords


References

S. Andersson, E. W. Blomqvist, L. Bafver, F. Jones, K. Davidsson, J. Froitzheim, M. Karlsson, E. Larsson and J. Liske. (2014). Sulfur Recirculation for increased electricity production in Waste-to-Energy plants. Waste Manag., 34, 67-78.
DOI 10.1016/j.wasman.2013.09.002

S. Andersson, S. Kreisz, H. Hunsinger. (2005). Dioxin removal: Adiox for wet scrubbers and dry absorbers. Filtration & Separation (Elsevier), Volume 42, Issue 10, Pages 22-25, December.
DOI 10.1016/S0015-1882(05)70726-6

N. Folkeson T. Jonsson M. Halvarsson L.G. Johansson and J.E. Svensson (2011). The influence of small amounts of KCl(s) on the high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 and 500°C. Materials and Corrosion 62(7): 606-615.
DOI 10.1002/maco.201005942

H. J. Grabke, E. Reese and M. Spiegel, (1995). The Effects of Chlorides, Hydrogen-Chloride, and Sulfur-Dioxide in the Oxidation of Steels Below Deposits,” Corrosion Science, vol. 37, no. 7, pp. 1023–1043.
DOI 10.1016/0010-938X(95)00011-8

B.K. Gullett, K.R. Bruce, L.O. Beach, (1992). Effect of Sulfur-Dioxide on the Formation Mechanism of Polychlorinated Dibenzodioxin and Dibenzofuran in Municipal Waste Combustors Environ. Sci. Tech. 26(10): 1938-1943. https://pubs.acs.org/doi/abs/10.1021/es00034a009

H. Hunsinger, S. Kreisz, and H. Vogg (1997). Formation of chlorinated aromatic compounds in the raw gas of waste incineration plants. Chemosphere, 34(5-7), 1033-1043.
DOI 10.1016/S0045-6535(97)00405-0

H. Hunsinger, K. Jay and J. Vehlow (2002). Formation and destruction of PCDD/F inside a grate furnace. Chemosphere, 46(9-10), 1263-1272.
DOI 10.1016/S0045-6535(01)00256-9

H. Hunsinger, H. Seifert and K. Jay. (2007). Reduction of PCDD/F formation in MSWI by a process-integrated SO2 cycle. Env. Eng. Sci., 24, 1145-1159.
DOI 10.1089/ees.2007.0108

H. Hunsinger and S. Andersson. (2014). The potential of SO2 for reducing corrosion in WtE plants. J. Material Cycles and Waste Manag., 16, 657-664.
DOI 10.1007/s10163-014-0271-9

T. Jonsson, A. Järdnäs, J.E. Svensson, L.G. Johansson and M. Halvarsson (2007). The effect of traces of SO2 on iron oxidation: A microstructural study. Oxidation of Metals 67(3-4): 193-213.
DOI 10.1007/s11085-007-9051-4

T. Jonsson, J. Froitzheim, J. Pettersson, J.E. Svensson, L.G. Johansson and M. Halvarsson (2009). The Influence of KCl on the Corrosion of an Austenitic Stainless Steel (304L) in Oxidizing Humid Conditions at 600 degrees C: A Microstructural Study. Oxidation of Metals. 72(3-4):213-39.
DOI 10.1007/s11085-009-9156-z

A. Järdnäs, J.E. Svensson and L.G. Johansson (2003). The Inhibitive Effect of Traces of SO2 on the Oxidation of Iron. Oxidation of Metals 60(5): 427-445.
DOI 10.1023/A:1027382702616

S. Karlsson, J. Pettersson, J. E. Svensson and L. G. Johansson. (2011). KCl-Induced high temperature corrosion of the austenitic stainless steel 304L - The influence of SO2. Mat. Sci. Forum, 696, 224-229.
DOI 10.4028/www.scientific.net/MSF.696.224

H. Kassman, J. Pettersson, B. M. Steenari and L. E. Åmand. (2013). Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion - Injection of ammonium sulphate and co-combustion with peat. Fuel Proc. Tech., 105, 170-180.
DOI 10.1016/j.fuproc.2011.06.025

H. T. Ma, C. H. Zhou and L. Wang, (2009). High temperature corrosion of pure Fe, Cr and Fe-Cr binary alloys in O2 containing trace KCl vapour at 750 °C,” Corrosion Science, vol. 51, no. 8, pp. 1861–1867.
DOI 10.1016/j.corsci.2009.05.014

J. Pettersson, N. Folkeson, L. G. Johansson and J. E. Svensson. (2011). The effects of KCl, K2SO4 and K2CO3 on the high temp. corrosion of a 304-type austenitic stainless steel. Oxidation of Met., 76, 93-109.
DOI 10.1007/s11085-011-9240-z

E. Vainio, P. Yrjas, M. Zevenhoven, A. Brink, T. Laurén, M. Hupa, T. Kajolinna and H. Vesala. (2013). The fate of chlorine, sulfur, and potassium during co-combustion of bark, sludge, and solid recovered fuel in an industrial scale BFB boiler. Fuel Proc. Tech., 105, 59-68.
DOI 10.1016/j.fuproc.2011.08.021

P. Viklund, R. Pettersson, A. Hjörnhede, P. Henderson and P. Sjövall. (2009). Effect of sulphur containing additive on initial corrosion of superheater tubes in waste fired boiler. Corr. Eng. Sci. and Tech., 44, 234-240.
DOI 10.1179/174327809X419203

A. Zahs, M. Spiegel and H.J.Grabke (1999). The influence of alloying elements on the chlorine- induced high temperature corrosion of Fe-Cr alloys in oxidizing atmospheres. Materials and Corrosion, vol. 50, no. 10, pp. 561–578.
DOI 10.1002/(SICI)1521-4176(199910)50:10<561::AID-MACO561>3.0.CO;2-L


sep
30