an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Tharaka Gunaratne - Division of Environmental Technology and Management, Linköping University, Department of Management and Engineering, Sweden
  • Joakim Krook - Division of Environmental Technology and Management, Linköping University, Department of Management and Engineering, Sweden
  • Mats Eklund - Division of Environmental Technology and Management, Linköping University, Department of Management and Engineering, Sweden
  • Hans Andersson - Division of Environmental Technology and Management, Linköping University, Department of Management and Engineering, Sweden

DOI 10.31025/2611-4135/2019.13868

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher

Editorial History

  • Received: 07 Jul 2019
  • Revised: 28 Sep 2019
  • Accepted: 24 Oct 2019
  • Available online: 20 Nov 2019


Millions of tonnes of shredder fines are generated and disposed of globally, despite compelling reasons for its recovery. The absence of a review of previous literature, however, makes it difficult to understand the underlying reasons for this. Thus, this study attempts to investigate and assess what, to what extent, and in what ways shredder fines have been addressed in previous research. In doing so, guidelines are drawn for future research to facilitate the valorisation (upgrading and recovery) of shredder fines. Previous research concerning shredder fines was identified with respect to three main research topics. The material characterisation studies are predominantly confined to the occurrence of metals due to their recovery and contamination potential. The process development studies have often undertaken narrowly conceived objectives of addressing one resource opportunity or contamination problem at a time. Consequently, the full recovery (the retrieval of valuable resources and the bulk-utilisation as substitute material) potential of shredder fines has been largely overlooked. The main limitation of policy and regulation studies is the absence of in-depth knowledge on the implications of governmental waste- and resource-policies (macro-level) on actors’ incentives and capacities (micro-level) for fines valorisation, which is necessary to understand the marketability of fines-derived resources. Undertaking a systems perspective is the key to recognising not only the different aspects within the individual research topics but also the inter-relations between them. It also facilitates the internalisation of the inter-relations into topical research.



Ahmed, N., Wenzel, H., Hansen, J.B., 2014. Characterization of Shredder Residues generated and deposited in Denmark. Waste Manag. 34, 1279–1288.
DOI 10.1016/j.wasman.2014.03.017

Allegrini, E., Maresca, A., Emil, M., Sommer, M., Boldrin, A., Fruergaard, T., 2014. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Manag. 34, 1627–1636.
DOI 10.1016/j.wasman.2014.05.003

Allen, L.E., Fisher, M.M., 2007. Metal Recovery from Shredder Residue Fines. J. Mater. Manuf. 156, 154–160

Allen, T., Kolb, J., 2009. Benefits of Holistic Shredder Residue Recovery: Mechanical Recycling and Energy Recovery, in: International Thermal Treatment Technologies (IT3) & Hazardous Waste Combustors (HWC) Joint Conference 2009. pp. 484–491

Andersson, M., Söderman, M.L., Sandén, B.A., 2019. Adoption of systemic and socio-technical perspectives in waste management, WEEE and ELV research. Sustainability 11.
DOI 10.3390/su11061677

Bareel, P.-F., Bastin, D., Bodson, C., Frenay, J., 2006. Sampling of Fine Shredder Residues (FSR) and characterisation oriented to physical separations, in: Kongoli, F., R.G, R. (Eds.), Sohn International Symposium Advanced Processing of Metals and Materials 2006. The Minerals Metals and Materials Society, San Diego, Caliofrnia, pp. 359–372

Bonifazi, G., Serranti, S., 2006. Hyperspectral imaging based techniques in fluff characterization, in: Proceedings of SPIE 6377, Advanced Environmental, Chemical, and Biological Sensing Technologies. Boston.
DOI 10.1117/12.684661

Börjeson, L., Löfvenius, G., Hjelt, M., Johansson, S., Marklund, S., 2000. Characterization of automotive shredder residues from two shredding facilities with different refining processes in Sweden. Waste Manag. Res. 18, 358–366.
DOI 10.1177/0734242X0001800408

Born, J.G.P., 1994. Quantities and Qualities of Municipal Waste Incinerator Residues in The Netherlands. Environ. Asp. Constr. with Waste Mater. 60, 633–644

Born, J.G.P., Veelenturf, R.A.L., 1997. MSWI residues in The Netherlands putting policy into practice. Waste Mater. Constr. Putt. Theory into Pract. 71, 841–850.
DOI 10.1016/S0166-1116(97)80269-5

Breitenstein, B., Elwert, T., Goldmann, D., Haas, A., Schirmer, T., Vogt, V., 2017. Froth Flotation of Copper and Copper Compounds from Fine Fractions of Waste Incineration Bottom Ashes. Chemie-Ingenieur-Technik 89, 97–107.
DOI 10.1002/cite.201600017

Cain, R.L., Goodship, V., Love, J.C., Smith, G.F., Tucker, N., 2000. Recycling of Automotive Shredder Residue (ASR) by co-injection moulding. Polym. Recycl. 5, 63–70

Cossu, R., Fiore, S., Lai, T., Luciano, A., Mancini, G., Ruffino, B., Viotti, P., Zanetti, M.C., 2014. Review of Italian experience on automotive shredder residue characterization and management. Waste Manag. 34, 1752–1762.
DOI 10.1016/j.wasman.2013.11.014

Cossu, R., Lai, T., 2015. Automotive shredder residue (ASR) management: An overview. Waste Manag. 45, 143–151.
DOI 10.1016/j.wasman.2015.07.042

Cronin, P., Kelly, A.M., Altaee, D., Foerster, B., Petrou, M., Dwamena, B.A., 2018. How to Perform a Systematic Review and Meta-analysis of Diagnostic Imaging Studies. Acad. Radiol. 25, 573–593.
DOI 10.1016/j.acra.2017.12.007

Dou, X., Ren, F., Nguyen, M.Q., Ahamed, A., Yin, K., Chan, W.P., Chang, V.W.C., 2017. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew. Sustain. Energy Rev. 79, 24–38.
DOI 10.1016/j.rser.2017.05.044

Dubois, M., Hoogmartens, R., Van Passel, S., Van Acker, K., Vanderreydt, I., 2015. Innovative market-based policy instruments for waste management: A case study on shredder residues in Belgium. Waste Manag. Res. 33, 886–893.
DOI 10.1177/0734242X15600053

Edo, M., Aracil, I., Font, R., Anzano, M., Fullana, A., Collina, E., 2013. Viability study of automobile shredder residue as fuel. J. Hazard. Mater. 260, 819–824.
DOI 10.1016/j.jhazmat.2013.06.039

European Commission, 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives, Official Journal of the Europian Union

European Commission, 2004. Methodology for the Analysis of Solid Waste (SWA-Tool) User Version. Vienna

European Commission, 2000. Directive 2000/53/EC of The European Parliament and of the Council of 18 September2000 on end-of life vehicles. Communities 6, 34–42.
DOI 10.1016/j.jclepro.2010.02.014

Fiore, S., Ruffino, B., Zanetti, M.C., 2012. Automobile Shredder Residues in Italy: Characterization and valorization opportunities. Waste Manag. 32, 1548–1559.
DOI 10.1016/j.wasman.2012.03.026

Fischer, T., 2006. Getting a return from residue. Scrap 63, 57–62

Furuyama, T., Bissombolo, A., 2005. Recovery of Copper from Light ASR Materials by Dry Towermilling and Electrostatic Separation, in: European Metallurgical Conference, EMC 2005. GDMB-Medienverl, Dresden

Gao, B., Fedje, K.K., Strömvall, A.M., 2015. Phosphorus recovery from sorted municipal solid waste incineration ash. Solid waste Technol. Manag. 41, 249–261

Gent, M.R., Menéndez, M., Muñiz, H., Torno, S., 2015. Recycling of a fine, heavy fluff automobile shredder residue by density and differential fragmentation. Waste Manag. 43, 421–433.
DOI 10.1016/j.wasman.2015.06.010

Gonzalez-Fernandez, O., Hidalgo, M., Margui, E., Carvalho, M.L., Queralt, I., 2008. Heavy metals’ content of automotive shredder residues (ASR): Evaluation of environmental risk. Environ. Pollut. 153, 476–482.
DOI 10.1016/j.envpol.2007.08.002

Gonzalez-Fernandez, O., Pessanha, S., Queralt, I., Carvalho, M.L., 2009. Analysis of lead content in automotive shredder residue (ASR). Waste Manag. 29, 2549–2552.
DOI 10.1016/j.wasman.2009.05.003

Hansen, W., Christopher, M., Verbuecheln, M., 2002. EU Waste Policy and Challenges for Regional and Local Authorities. Berlin

Hernández Parrodi, J.C., Höllen, D., Pomberger, R., 2018a. Potential and Main Technological Challenges for Material and Energy Recovery From Fine Fractions of Landfill Mining: a Critical Review. Detritus In Press, 1.
DOI 10.31025/2611-4135/2018.13689

Hernández Parrodi, J.C., Höllen, D., Pomberger, R., 2018b. Characterisation of Fine Fractions from Landfill Mining: A Review of Previous Investigations 02, 46–62

Holm, O., Simon, F.G., 2017. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Manag. 59, 229–236.
DOI 10.1016/j.wasman.2016.09.004

Huang, C.M., Yang, W.F., Ma, H.W., Song, Y.R., 2006. The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Manag. 26, 979–987.
DOI 10.1016/j.wasman.2005.09.015

Huang, J., Tian, C., Ren, J., Bian, Z., 2017. Study on impact acoustic—visual sensor-based sorting of ELV plastic materials. Sensors 17.
DOI 10.3390/s17061325

Iacovidou, E., Millward-Hopkins, J., Busch, J., Purnell, P., Velis, C.A., Hahladakis, J.N., Zwirner, O., Brown, A., 2017. A pathway to circular economy: Developing a conceptual framework for complex value assessment of resources recovered from waste. J. Clean. Prod. 168, 1279–1288.
DOI 10.1016/j.jclepro.2017.09.002

Izumikawa, C., 1999. Metal recovery from ash of automobile shredder residue - Especially focusing on particle shape, in: Gaballah, I., Hager, J., Solozabal, R. (Eds.), REWAS’99: Global Symposium on Recycling, Waste Treatment, and Clean Technology. The Minerals Metals and Materials Society

Jody, B.J., Daniel, E.J., Pomykala Jr., J.A., 1996. Progress in recycling of automobile shredder residue. Argonne, Illinois

Johansson, N., Krook, J., Eklund, M., 2012. Transforming dumps into gold mines. Experiences from Swedish case studies. Environ. Innov. Soc. Transitions 5, 33–48.
DOI 10.1016/j.eist.2012.10.004

Johansson, N., Krook, J., Frändegård, P., 2017. A new dawn for buried garbage? An investigation of the marketability of previously disposed shredder waste. Waste Manag. 60, 417–427.
DOI 10.1016/j.wasman.2016.05.015

Joyce, P.J., Björklund, A., 2019. Using Life Cycle Thinking to Assess the Sustainability Benefits of Complex Valorization Pathways for Bauxite Residue. J. Sustain. Metall. 5, 69–84.
DOI 10.1007/s40831-019-00209-x

Joyce, P.J., Hertel, T., Goronovski, A., Tkaczyk, A.H., Pontikes, Y., Björklund, A., 2018. Identifying hotspots of environmental impact in the development of novel inorganic polymer paving blocks from bauxite residue. Resour. Conserv. Recycl. 138, 87–98.
DOI 10.1016/j.resconrec.2018.07.006

Kinto, K., 1996. Ash melting system and reuse of products by ARC processing. Waste Manag. 16, 423–430.
DOI 10.1016/S0956-053X(96)00088-8

Konetschnik, D.S., Schneeberger, G., 2009. Recovery of Copper and Precious Metals from Shredder Residues, in: Harre, J. (Ed.), Proceedings of European Metallurgical Conference, 2009. Clausthal-Zellerfeld, Innsbruck, Austria, pp. 661–672

Kurose, K., Okuda, T., Nishijima, W., Okada, M., 2006. Heavy metals removal from automobile shredder residues (ASR). J. Hazard. Mater. 137, 1618–1623.
DOI 10.1016/j.jhazmat.2006.04.049

Lam, C.H.K., Ip, A.W.M., Barford, J.P., McKay, G., 2010. Use of incineration MSW ash: A review. Sustainability 2, 1943–1968.
DOI 10.3390/su2071943

Lanoir, D., Trouvé, G., Delfosse, L., Froelich, D., Kassamaly, A., 1997. Physical and Chemical Characterization of Automotive Shredder Residues. Waste Manag. Res.
DOI 10.1177/0734242X9701500305

Le, N.H., Abriak, N.E., Binetruy, C., Benzerzour, M., Nguyen, S.T., 2017. Mechanical behavior of municipal solid waste incinerator bottom ash: Results from triaxial tests. Waste Manag. 65, 37–46.
DOI 10.1016/j.wasman.2017.03.045

Lee, W.C., Shin, D.C., Dong, J.I., 2014. Investigation of characteristics of incinerator bottom ash and assessment for recycle due to the change of MSW composition. Appl. Chem. Eng. 25, 103–106.
DOI 10.14478/ace.2014.1007

Lewis, G., Gaydardzhiev, S., Bastin, D., Bareel, P.F., 2011. Bio hydrometallurgical recovery of metals from Fine Shredder Residues. Miner. Eng. 24, 1166–1171.
DOI 10.1016/j.mineng.2011.03.025

Mallampati, S.R., Lee, B.H., Mitoma, Y., Simion, C., 2018. Sustainable recovery of precious metals from end-of-life vehicles shredder residue by a novel hybrid ball-milling and nanoparticles enabled froth flotation process. J. Clean. Prod. 171, 66–75.
DOI 10.1016/j.jclepro.2017.09.279

Mallampati, S.R., Lee, B.H., Mitoma, Y., Simion, C., 2016. Dual mechanochemical immobilization of heavy metals and decomposition of halogenated compounds in automobile shredder residue using a nano-sized metallic calcium reagent. Environ. Sci. Pollut. Res. 23, 22783–22792.
DOI 10.1007/s11356-016-7458-7

Mankins, J.C., 1995. Technology Readiness Levels, A White Paper, NASA

Margallo, M., Taddei, M.B.M., Hernández-Pellón, A., Aldaco, R., Irabien, Á., 2015. Environmental sustainability assessment of the management of municipal solid waste incineration residues: A review of the current situation. Clean Technol. Environ. Policy 17, 1333–1353.
DOI 10.1007/s10098-015-0961-6

Morselli, L., Santini, A., Passarini, F., Vassura, I., 2010. Automotive shredder residue (ASR) characterization for a valuable management. Waste Manag. 30, 2228–2234.
DOI 10.1016/j.wasman.2010.05.017

Nayak, N., Apelian, D., 2014. Opportunities and Barriers to Resource Recovery and Recycling from Shredder Residue in the United States. Jom 66, 2367–2376.
DOI 10.1007/s11837-014-0902-6

Pera, J., Ambroise, J., 2005. Stabilization of automotive shredder residue by calcium sulfoaluminate cement, in: I, G., Mishra, R., Solosabal, M., Tanaka, M. (Eds.), REWAS ’04: Global Symposium on Recycling, Waste Treatment and Clean Technology. Minerals, Metals & Materials Society, Madrid, Spain, pp. 13–18

Péra, J., Ambroise, J., Chabannet, M., 2004. Valorization of automotive shredder residue in building materials. Cem. Concr. Res. 34, 557–562.
DOI 10.1016/j.cemconres.2003.09.004

Peschl, M.F., 2007. Triple loop learning as foundation for profound change, individual cultivation, and radical innovation: Construction processes beyond scienti c and rational knowledge. Constr. Found. 2, 136–145

Pettigrew, A.M., 2012. Context and Action in the Transformation of the Firm_A reprise. J. Manag. Stud. 49, 1304–1328.
DOI 10.1111/j.1467-6486.2012.01054.x

Porter, M.E., 1985. Competitive Advantage: Creating and Sustaining Superior Performance. The Free Press, New York

Porter, M.E., 1980. Competitive strategy: Techniques for analyzing industries and competitors. The Free Press, New York

Rahman, M.A., Bakker, M.C.M., 2013. Sensor-based control in eddy current separation of incinerator bottom ash. Waste Manag. 33, 1418–1424.
DOI 10.1016/j.wasman.2013.02.013

Rahman, M.A., Bakker, M.C.M., 2012. Hybrid sensor for metal grade measurement of a falling stream of solid waste particles. Waste Manag. 32, 1316–1323.
DOI 10.1016/j.wasman.2012.03.012

Reuter, M.A., Pieterse, M.V., Dalmijn, W.L., 1999. Is the Purometallurgical recovery of the Inorganic Material an Option for Automobile Shredder Residue, in: Gaballah, I., Hager, J., SoloZabal, R. (Eds.), Rewas’99: Global Symposium on Recycling, Waste Treatment and Clean Technology (Vol. II, Pp. 1787-1797). Minerals, Metals & Materials Society, San Sebastian, Spain

Ribbing, C., 2007. Environmentally friendly use of non-coal ashes in Sweden. Waste Manag. 27, 1428–1435.
DOI 10.1016/j.wasman.2007.03.012

Robson, S., Goodhead, T.C., 2003. A process for incorporating automotive shredder residue into thermoplastic mouldings. J. Mater. Process. Technol. 139, 327–331.
DOI 10.1016/S0924-0136(03)00549-1

Rocha, M., Searcy, C., Karapetrovic, S., 2007. Integrating Sustainable Development into Existing Management Systems. Total Qual. Manag. Bus. Excell. 18, 83–92.
DOI 10.1080/14783360601051594

Rossetti, V.A., Di Palma, L., Medici, F., 2006. Production of aggregate from non-metallic automotive shredder residues. J. Hazard. Mater. 137, 1089–1095.
DOI 10.1016/j.jhazmat.2006.03.048

Sabatier, P.A., 2019. Top-down and Bottom-up Approaches to Implementation Research : A Critical Analysis and Suggested Synthesis. J. Public Policy 6, 21–48

Santini, A., Passarini, F., Vassura, I., Serrano, D., Dufour, J., Morselli, L., 2012. Auto shredder residue recycling: Mechanical separation and pyrolysis. Waste Manag. 32, 852–858.
DOI 10.1016/j.wasman.2011.10.030

Scopus, 2018. Scopus [WWW Document]. Elsevier. URL (accessed 10.27.17)

Silva, R. V., de Brito, J., Lynn, C.J., Dhir, R.K., 2017. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review. Waste Manag. 68, 207–220.
DOI 10.1016/j.wasman.2017.06.043

Simona, S.-F., Havlik, T., Miskufova, A., 2017. Recycling of automotive shredder residue by granulometric separation. MM Sci. J. 1810–1813.
DOI 10.17973/MMSJ.2017_06_2016153

Singh, J., Chang, Y.-Y., Yang, J.-K., Kang, S.-H., Koduru, J.R., 2016a. Utilization of nano/micro-size iron recovered from the fine fraction of automobile shredder residue for phenol degradation in water. Front. Environ. Sci. Eng. 10, 9.
DOI 10.1007/s11783-016-0848-8

Singh, J., Lee, B.K., 2016a. Kinetics and extraction of heavy metals resources from automobile shredder residue. Process Saf. Environ. Prot. 99, 69–79.
DOI 10.1016/j.psep.2015.10.010

Singh, J., Lee, B.K., 2016b. Recovery of precious metals from low-grade automobile shredder residue: A novel approach for the recovery of nanozero-valent copper particles. Waste Manag. 48, 353–365.
DOI 10.1016/j.wasman.2015.10.019

Singh, J., Lee, B.K., 2015a. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): An application of advanced Fenton process (AFP). J. Environ. Manage. 161, 1–10.
DOI 10.1016/j.jenvman.2015.06.034

Singh, J., Lee, B.K., 2015b. Reduction of environmental availability and ecological risk of heavy metals in automobile shredder residues. Ecol. Eng. 81, 76–81.
DOI 10.1016/j.ecoleng.2015.04.036

Singh, J., Lee, B.K., 2015c. Pollution control and metal resource recovery for low grade automobile shredder residue: A mechanism, bioavailability and risk assessment. Waste Manag. 38, 271–283.
DOI 10.1016/j.wasman.2015.01.035

Singh, J., Lingamdinne, L.P., Yang, J.K., Chang, Y.Y., Lee, B.K., Koduru, J.R., 2017. Effect of pH values on recovery of nano particles (NPs) from the fine fraction of automobile shredder residue (ASR): An application of NPs for phenol removal from the water. Process Saf. Environ. Prot. 105, 51–59.
DOI 10.1016/j.psep.2016.10.011

Singh, J., Yang, J.K., Chang, Y.Y., 2016b. Synthesis of nano zero-valent metals from the leaching liquor of automobile shredder residue: A mechanism and potential applications for phenol degradation in water. Process Saf. Environ. Prot. 102, 204–213.
DOI 10.1016/j.psep.2016.03.013

Singh, J., Yang, J.K., Chang, Y.Y., 2016c. Quantitative analysis and reduction of the eco-toxicity risk of heavy metals for the fine fraction of automobile shredder residue (ASR) using H2O2. Waste Manag. 48, 374–382.
DOI 10.1016/j.wasman.2015.09.030

Šyc, M., Krausová, A., Kameníková, P., Šomplák, R., Pavlas, M., Svoboda, K., Punc, M., Zach, B., Pohor, M., 2018. Material analysis of Bottom ash from waste-to-energy plants. Waste Manag. 73, 360–366.
DOI 10.1016/j.wasman.2017.10.045

Tang, J., Steenari, B.M., 2016. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd. Waste Manag. 48, 315–322.
DOI 10.1016/j.wasman.2015.10.003

Tanigaki, N., Manako, K., Osada, M., 2012. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system. Waste Manag. 32, 667–675.
DOI 10.1016/j.wasman.2011.10.019

van Beers, D., Bossilkov, A., Lund, C., 2009. Development of large scale reuses of inorganic by-products in Australia: The case study of Kwinana, Western Australia. Resour. Conserv. Recycl. 53, 365–378.
DOI 10.1016/j.resconrec.2009.02.006

van der Zwan, J.T., 1997. Application of waste materials a success now, a success in the future. Waste Mater. Constr. Putt. Theory into Pract. 869–881.
DOI 10.1016/S0166-1116(97)80272-5

Van Gerven, T., Geysen, D., Stoffels, L., Jaspers, M., Wauters, G., Vandecasteele, C., 2005. Management of incinerator residues in Flanders (Belgium) and in neighbouring countries. A comparison. Waste Manag. 25, 75–87.
DOI 10.1016/j.wasman.2004.09.002

Verbinnen, B., Billen, P., Van Caneghem, J., Vandecasteele, C., 2017. Recycling of MSWI Bottom Ash: A Review of Chemical Barriers, Engineering Applications and Treatment Technologies. Waste and Biomass Valorization 8, 1453–1466.
DOI 10.1007/s12649-016-9704-0

Vermeulen, I., Van Caneghem, J., Block, C., Baeyens, J., Vandecasteele, C., 2011. Automotive shredder residue (ASR): Reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. J. Hazard. Mater. 190, 8–27.
DOI 10.1016/j.jhazmat.2011.02.088

Vorobieff, G., 2010. Challenges confronting sustainable practices for concrete pavement design and construction in Australia. Int. J. Pavement Res. Technol. 3, 259–269

Zorpas, A.A., Inglezakis, V.J., 2012. Automotive industry challenges in meeting EU 2015 environmental standard. Technol. Soc. 34, 55–83.
DOI 10.1016/j.techsoc.2011.12.006