an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Giovanni Francini - DICEA - Department of Civil and Environmental Engineering, University of Florence, Italy
  • Marzio Lasagni - AISA IMPIANTI S.p.A., Italy
  • Lidia Lombardi - Niccolò Cusano University, Italy

DOI 10.31025/2611-4135/2020.13921

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher

Editorial History

  • Received: 21 Dec 2018
  • Revised: 29 Jan 2020
  • Accepted: 25 Feb 2020
  • Available online: 23 Mar 2020


The present study focused on a comparison of two technologies applied in the mesophilic anaerobic digestion, namely a conventional wet one and a dry batch one. The considered substrate was the source sorted organic fraction of municipal solid waste (SS-OFMSW) and the input flow rate, for the study case, was 35,000 Mg/year. The analysed systems included the pre-treatment of the SS-OFMSW, anaerobic digestion, upgrading of biogas to biomethane and aerobic post-treatment for the purpose of obtaining compost. The comparison was made by the calculation of three indicators: net present value, total primary energy and CO2 equivalent emissions, with the aim of providing elements for choosing the most appropriate technology for the specific case. The results obtained demonstrated the finding of worse values by the total primary energy indicator for the dry batch technology, providing a saving of approx. 21% lower compared to the wet one. In terms of CO2 equivalent emissions, the dry batch anaerobic digestion technology provided a better indicator than the wet anaerobic digestion system. Sensitivity analysis revealed the finding of an opposite result only when high specific gas production values were assumed for wet anaerobic digestion, and low specific gas production values for the dry batch technology.From an economic perspective, the results indicated a preference for the dry batch technology due to a higher net present value and a shorter period of return of the investment. This finding was also confirmed by a Monte Carlo uncertainty analysis, showing how the dry batch system featured a 90% of possibility of achieving a higher economically sustainability versus the wet technology.



Agenzia Regionale Recupero Risorse S.p.A., 2017. Rifiuti urbani e Raccolte differenziate Regione Toscana - Dati comunali anni dal 1998 al 2017.

Angelonidi, E., Smith, S.R., 2015. A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water and Environment Journal 29, 549–557.
DOI 10.1111/wej.12130

Blengini, G.A., 2008. Applying LCA to organic waste management in Piedmont, Italy. Management of Environmental Quality: An International Journal 19, 533–549.
DOI 10.1108/14777830810894229

Boldrin, A., Hartling, K.R., Laugen, M., Christensen, T.H., 2010. Environmental inventory modelling of the use of compost and peat in growth media preparation. Resources, Conservation and Recycling 54, 1250–1260.
DOI 10.1016/j.resconrec.2010.04.003

British Petroleum, 2018. BP Statistical Review of World Energy.

Brown, D., Li, Y., 2013. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology 127, 275–280.
DOI 10.1016/j.biortech.2012.09.081

Campanelli, M., Foladori, P., Vaccari, M., 2013. Consumi elettrici ed efficienza energetica nel trattamento delle acque reflue. Maggioli Editore

Cecchi, F., Battistoni, P., Pavan, P., Bolzonella, D., Innocenti, L., 2005. Manuali e Linee Guida 13/2005 - Digestione anaerobica della frazione organica dei rifiuti solidi.

Chatterjee, B., Mazumder, D., 2016. Anaerobic digestion for the stabilization of the organic fraction of municipal solid waste: A review. Environmental Reviews 24, 426–459.
DOI 10.1139/er-2015-0077

Colazo, A.B., Sánchez, A., Font, X., Colón, J., 2015. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout. Waste Management 43, 84–97.
DOI 10.1016/j.wasman.2015.06.028

D.Lgs 192/2005, 2005. Attuazione della direttiva 2002/91/CE relativa al rendimento energetico nell’edilizia.

Daniel-Gromke, J., Liebetrau, J., Denysenko, V., Krebs, C., 2015. Digestion of bio-waste - GHG emissions and mitigation potential. Energy, Sustainability and Society 5, 1–12.
DOI 10.1186/s13705-014-0032-6

Di Lonardo, M.C., Lombardi, F., Gavasci, R., 2012. Characterization of MBT plants input and outputs: A review. Reviews in Environmental Science and Biotechnology 11, 353–363.
DOI 10.1007/s11157-012-9299-2

Di Maria, F., Sordi, A., Micale, C., 2012. Optimization of solid state anaerobic digestion by inoculum recirculation: The case of an existing mechanical biological treatment plant. Applied Energy 97, 462–469.
DOI 10.1016/j.apenergy.2011.12.093

EBA, 2017. EBA Statistical Report 2017. Annual Report 68.

Evangelisti, S., Lettieri, P., Clift, R., Borello, D., 2015. Distributed generation by energy from waste technology: A life cycle perspective. Process Safety and Environmental Protection 93, 161–172.
DOI 10.1016/j.psep.2014.03.008

Fernández, J., Pérez, M., Romero, L.I., 2008. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresource Technology 99, 6075–6080.
DOI 10.1016/j.biortech.2007.12.048

Forster-Carneiro, T., Pérez, M., Romero, L.I., 2008. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology 99, 6994–7002.
DOI 10.1016/j.biortech.2008.01.018

Friedrich, E., Trois, C., 2016. Current and future greenhouse gas (GHG) emissions from the management of municipal solid waste in the eThekwini Municipality - South Africa. Journal of Cleaner Production 112, 4071–4083.
DOI 10.1016/j.jclepro.2015.05.118

GME – Gestore Mercati Energetici, 2018. Mercati del gas.

Gunatilake, S.K., 2016. Get Energy from Waste. Lambert Academic Publishing

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 151.

IPPC, 2006. Best Available Techniques for the Waste Treatments Industries. European Commision.

ISPRA, 2018. Istituto Superiore per la Protezione e la Ricerca Ambientale - Fattori di emissione atmosferica di gas a effetto serra e altri gas nel settore elettrico.

ISPRA, 2017. Istituto Superiore per la Protezione e la Ricerca Ambientale - Rapporto Rifiuti Urbani 2017.

Khoshnevisan, B., Tsapekos, P., Alvarado-Morales, M., Rafiee, S., Tabatabaei, M., Angelidaki, I., 2018. Life cycle assessment of different strategies for energy and nutrient recovery from source sorted organic fraction of household waste. Journal of Cleaner Production 180, 360–374.
DOI 10.1016/j.jclepro.2018.01.198

Luning, L., van Zundert, E.H.M., Brinkmann, A.J.F., 2003. Comparison of dry and wet digestion for solid waste. Water Science & Technology 48, 15–20.
DOI 10.2166/wst.2003.0210

Marchi, M., Pulselli, F.M., Mangiavacchi, S., Menghetti, F., Marchettini, N., Bastianoni, S., 2017. The greenhouse gas inventory as a tool for planning integrated waste management systems: a case study in central Italy. Journal of Cleaner Production 142, 351–359.
DOI 10.1016/j.jclepro.2016.05.035

Masotti, L., 2011. Depurazione delle acque. Tecniche ed impianti per il trattamento delle acque di rifiuto. Calderini

Mata-Alvarez, J., 2002. Biomethanization of the organic fraction of municipal solid wastes. Iwa Publishing.
DOI 10.2166/9781780402994

Mata-Alvarez, J., Dosta, J., Romero-Güiza, M.S., Fonoll, X., Peces, M., Astals, S., 2014. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews 36, 412–427.
DOI 10.1016/j.rser.2014.04.039

Micolucci, F., Gottardo, M., Pavan, P., Cavinato, C., Bolzonella, D., 2018. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste. Journal of Cleaner Production 171, 1376–1385.
DOI 10.1016/j.jclepro.2017.10.080

Ministero delle Infrastrutture e dei Trasporti, 2009. Costo chilometrico medio relativo al consumo di gasolio delle imprese di autotrasporto per conto terzi.

Ministero dello Sviluppo Economico, 2018. Decreto interministeriale 2 marzo 2018 - Promozione dell’uso del biometano nel settore dei trasporti.

Nagao, N., Tajima, N., Kawai, M., Niwa, C., Kurosawa, N., Matsuyama, T., Yusoff, F.M., Toda, T., 2012. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresource Technology 118, 210–218.
DOI 10.1016/j.biortech.2012.05.045

Neri, E., Passarini, F., Cespi, D., Zoffoli, F., Vassura, I., 2018. Sustainability of a bio-waste treatment plant: Impact evolution resulting from technological improvements. Journal of Cleaner Production 171, 1006–1019.
DOI 10.1016/j.jclepro.2017.10.082

Oldfield, T.L., White, E., Holden, N.M., 2016. An environmental analysis of options for utilising wasted food and food residue. Journal of Environmental Management 183, 826–835.
DOI 10.1016/j.jenvman.2016.09.035

Patinvoh, R.J., 2017. Biological pretreatment and dry digestion processes for biogas production. Thesis of the degree of Doctor of Philosophy at the University of Borås.

Qian, M.Y., Li, R.H., Li, J., Wedwitschka, H., Nelles, M., Stinner, W., Zhou, H.J., 2016. Industrial scale garage-type dry fermentation of municipal solid waste to biogas. Bioresource Technology 217, 82–89.
DOI 10.1016/j.biortech.2016.02.076

Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., Liu, Y., 2018. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresource Technology 247, 1069–1076.
DOI 10.1016/j.biortech.2017.09.109

Righi, S., Oliviero, L., Pedrini, M., Buscaroli, A., Della Casa, C., 2013. Life Cycle Assessment of management systems for sewage sludge and food waste: Centralized and decentralized approaches. Journal of Cleaner Production 44, 8–17.
DOI 10.1016/j.jclepro.2012.12.004

Saer, A., Lansing, S., Davitt, N.H., Graves, R.E., 2013. Life cycle assessment of a food waste composting system: Environmental impact hotspots. Journal of Cleaner Production 52, 234–244.
DOI 10.1016/j.jclepro.2013.03.022

Sullivan, W.G., Wicks, E.M., Koelling, C.P., 2014. Engineering Economy, 16th ed. Pearson

Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X., 2015. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renewable and Sustainable Energy Reviews 51, 521–532.
DOI 10.1016/j.rser.2015.06.029

Torretta, V., Ionescu, G., Raboni, M., Merler, G., 2014. The mass and energy balance of an integrated solution for municipal solid waste treatment. WIT Transactions on Ecology and the Environment 180, 151–161.
DOI 10.2495/WM140131

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., 2016. The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment 3, 1218–1230.
DOI 10.1007/s11367-016-1087-8

Wiedmann, T.O., Minx, J., 2007. A definition of ‘carbon footprint’. In: Pertsova, C. (Ed.), Ecological Economics Research Trends, Nova Science Publishers, pp. 1–11

Zhang, Y., Banks, C.J., 2013. Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste. Waste Management 33, 297–307.
DOI 10.1016/j.wasman.2012.09.024