an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Melissa Lisa Van Rensburg - Discipline of Geography, University of KwaZulu-Natal, South Africa
  • S'phumelele Lucky Nkomo - Discipline of Geography, University of KwaZulu-Natal, South Africa
  • Ntandoyenkosi Malusi Mkhize - Discipline of Chemical Engineering, University of KwaZulu-Natal, South Africa

DOI 10.31025/2611-4135/2021.14064

Released under CC BY-NC-ND

Copyright: © 2020 CISA Publisher

Editorial History

  • Received: 13 Nov 2020
  • Revised: 02 Feb 2021
  • Accepted: 19 Feb 2021
  • Available online: 31 Mar 2021


Majority of post-consumer leather footwear currently ends up in landfill sites with adverse environmental impacts. Current waste recovery options have proven largely unsuccessful in minimizing this waste stream. This study investigates whether leather from post-consumer footwear can be pyrolyzed using gram-scale (fixed-bed) and microgram-scale (TGA) pyrolysis reactors. The investigation was conducted using final pyrolysis process temperatures between 450 and 650 °C and solid residence times of 5 to 15 minutes. The purpose of the experiments was to assess the waste recovery potential of leather pyrolysis products for valuable chemicals. The pyrolysis product fractions (solid, liquid, and gas) distribution were investigated, optimal pyrolysis conditions presented, and the product fractions characterized for their elemental and chemical composition using ultimate and GC-MS analysis. The distribution of the product fractions proved leather footwear pyrolysis was viable under the given conditions. The completion of leather footwear pyrolysis was evident at 650°C since the solid yield reached a constant value of approximately 25 wt.%. The liquid fraction was maximized within the temperature range of 550-650°C (Max= 54 wt.%), suggesting optimal pyrolysis conditions within this range. The higher heating values (HHVs) of the pyrolysis leather oil (33.6 MJ/kg) and char (25.6 MJ/kg) suggested their potential application for energy or fuel. The liquid fraction comprised predominantly of nitrogen derivatives and potential applications areas include use in the production of fertilizers, chemical feedstocks, or the pharmaceutical industry. This study proved that leather from post-consumer footwear can be pyrolyzed and provided valuable insight into its characterization and potential applications areas.



Al Arni, S. (2018). Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy, 124, 197-201.
DOI 10.1016/j.renene.2017.04.060

Albers, K., Canepa, P., & Miller, J. (2008). Analyzing the Environmental Impacts of Simple Shoes (Masters). University of Santa Barbara

Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., & Olazar, M. (2020). Waste tyre valorization by catalytic pyrolysis – A review. Renewable And Sustainable Energy Reviews, 129, 109932.
DOI 10.1016/j.rser.2020.109932

Aylón, E., Fernández-Colino, A., Murillo, R., Navarro, M., García, T., & Mastral, A. (2010). Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 30(7), 1220-1224.
DOI 10.1016/j.wasman.2009.10.001

Aziz, M., Rahman, M., & Molla, H. (2018). Design, fabrication and performance test of a fixed bed batch type pyrolysis plant with scrap tire in Bangladesh. Journal Of Radiation Research And Applied Sciences, 11(4), 311-316.
DOI 10.1016/j.jrras.2018.05.001

DOI 10.13031/2013.3086

Baniasadi, M., Tugnoli, A., Conti, R., Torri, C., Fabbri, D., & Cozzani, V. (2016). Waste to energy valorization of poultry litter by slow pyrolysis. Renewable Energy, 90, 458-468.
DOI 10.1016/j.renene.2016.01.018

Bañón, E., Marcilla, A., García, A., Martínez, P., & León, M. (2016). Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis. Waste Management, 48, 285-299.
DOI 10.1016/j.wasman.2015.10.012

Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction (3rd ed., pp. 479-495). Elsevier

Ben, H., & Ragauskas, A. (2011). NMR Characterization of Pyrolysis Oils from Kraft Lignin. Energy & Fuels, 25(5), 2322-2332.
DOI 10.1021/ef2001162

Ben, H., Wu, F., Wu, Z., Han, G., Jiang, W., & Ragauskas, A. (2019). A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks. Polymers, 11(9), 1387.
DOI 10.3390/polym11091387

Channiwala, S., & Parikh, P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051-1063.
DOI 10.1016/s0016-2361(01)00131-4

Chiaramonti, D., Oasmaa, A., & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass. Renewable And Sustainable Energy Reviews, 11(6), 1056-1086.
DOI 10.1016/j.rser.2005.07.008

Chrobot, P., Faist, M., Gustavus, L., Martin, A., Stamm, A., Zah, R., & Zollinge, M. (2018). Measuring fashion: Environmental impact of the global apparel and footwear industries study. Full report and methodological considerations. Lausanne: Quantis

Chowdhury, Z., Ahmed, T., Antunes, P., & Paul, H. (2018). Environmental Life Cycle Assessment of Leather Processing Industry: A Case Study of Bangladesh. Journal- Society Of Leather Technologists And Chemists, 102. Retrieved 11 November 2020, from

Czajczyńska, D., Nannou, T., Anguilano, L., Krzyżyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387-394.
DOI 10.1016/j.egypro.2017.07.275

Demirbas, A. (2016). Calculation of higher heating values of fatty acids. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, 38(18), 2693-2697.
DOI 10.1080/15567036.2015.1115924

Dinçer, I., & Zamfirescu, C. (2014). Advanced power generation systems. Elsevier

Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695-716.
DOI 10.1016/j.renene.2017.04.035

Fang, C., Jiang, X., Lv, G., Yan, J., Lin, X., Song, H., & Cao, J. (2018). Pyrolysis characteristics and Cr speciation of chrome-tanned leather shavings: influence of pyrolysis temperature. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, 41(7), 881-891.
DOI 10.1080/15567036.2018.1520366

Filho, A., Lange, L., de Melo, G., & Praes, G. (2016). Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process. Waste Management, 48, 448-456.
DOI 10.1016/j.wasman.2015.11.046

Font, R., Caballero, J., Esperanza, M., & Fullana, A. (1999). Pyrolytic products from tannery wastes. Journal Of Analytical And Applied Pyrolysis, 49(1-2), 243-256.
DOI 10.1016/s0165-2370(98)00117-x

Fyvie, E. (2018). Trash revolution: Breaking the Waste Cycle. Kids Can Press, Limited

Gao, N., Quan, C., Liu, B., Li, Z., Wu, C., & Li, A. (2017). Continuous Pyrolysis of Sewage Sludge in a Screw-Feeding Reactor: Products Characterization and Ecological Risk Assessment of Heavy Metals. Energy & Fuels, 31(5), 5063-5072.
DOI 10.1021/acs.energyfuels.6b03112

Getachew, P., Getachew, M., Joo, J., Choi, Y., Hwang, D., & Hong, Y. (2016). The slip agents oleamide and erucamide reduce biofouling by marine benthic organisms (diatoms, biofilms and abalones). Toxicology And Environmental Health Sciences, 8(5), 341-348.
DOI 10.1007/s13530-016-0295-8

Godinho, M., Birriel, E., Marcilio, N., Masotti, L., Martins, C., & Wenzel, B. (2011). High-temperature corrosion during the thermal treatment of footwear leather wastes. Fuel Processing Technology, 92(5), 1019-1025.
DOI 10.1016/j.fuproc.2010.12.025

Gottfridsson, M., & Zhang, Y. (2015). Environmental impacts of shoe consumption: Combining product flow analysis with an LCA model for Sweden (Masters). Chalmers University of technology

Guda, V., Steele, P., Penmetsa, V., & Li, Q. (2015). Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology. In A. Pandey, M. Stöcker, T. Bhaskar & R. Sukumaran, Recent Advances in Thermochemical Conversion of Biomass (pp. 177-211). Elsevier. Retrieved 12 November 2020, from

He, X., Liu, Z., Niu, W., Yang, L., Zhou, T., & Qin, D. et al. (2018). Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy, 143, 746-756.
DOI 10.1016/

Hedberg, Y., Lidén, C., & Odnevall Wallinder, I. (2015). Chromium released from leather – I: exposure conditions that govern the release of chromium( III ) and chromium( VI ). Contact Dermatitis, 72(4), 206-215.
DOI 10.1111/cod.12329

Hirvonen, P. (2017). The potential of waste tyre and waste plastics pyrolysis in Southern Savonia region (Masters). Lappeenranta University of Technology

Islam, M., Islam, M., Mustafi, N., Rahim, M., & Haniu, H. (2013). Thermal Recycling of Solid Tire Wastes for Alternative Liquid Fuel: The First Commercial Step in Bangladesh. Procedia Engineering, 56, 573-582.
DOI 10.1016/j.proeng.2013.03.162

Januszewicz, K., Klein, M., Klugmann-Radziemska, E., & Kardas, D. (2016). Thermogravimetric analysis/pyrolysis of used tyres and waste rubber. Physicochemical Problems Of Mineral Processing, 53, 802−811.
DOI 10.1515/cpe-2017-0028

Jo, J., Kim, S., Shim, J., Lee, Y., & Yoo, Y. (2017). Pyrolysis Characteristics and Kinetics of Food Wastes. Energies, 10(8), 1191.
DOI 10.3390/en10081191

Joseph, K., & Nithya, N. (2009). Material flows in the life cycle of leather. Journal Of Cleaner Production, 17(7), 676-682.
DOI 10.1016/j.jclepro.2008.11.018

Kaur, R., Rani, V., Abbot, V., Kapoor, Y., Konar, D., & Kumar, K. (2017). Recent synthetic and medicinal perspectives of pyrroles: An overview. Journal Of Pharmaceutical Chemistry & Chemical Science, 1, 17-32. Retrieved 12 November 2020, from

Kluska, J., Ochnio, M., Kardaś, D., & Heda, Ł. (2019). The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste. Waste Management, 88, 248-256.
DOI 10.1016/j.wasman.2019.03.046

Kolomaznik, K., Adamek, M., Andel, I., & Uhlirova, M. (2008). Leather waste—Potential threat to human health, and a new technology of its treatment. Journal Of Hazardous Materials, 160(2-3), 514-520.
DOI 10.1016/j.jhazmat.2008.03.070

Lopez, G., Alvarez, J., Amutio, M., Mkhize, N., Danon, B., & van der Gryp, P. et al. (2017). Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Conversion And Management, 142, 523-532.
DOI 10.1016/j.enconman.2017.03.051

Marcilla, A., León, M., García, Á., Bañón, E., & Martínez, P. (2012). Upgrading of Tannery Wastes under Fast and Slow Pyrolysis Conditions. Industrial & Engineering Chemistry Research, 51(8), 3246-3255.
DOI 10.1021/ie201635w

Meier, D., van de Beld, B., Bridgwater, A., Elliott, D., Oasmaa, A., & Preto, F. (2013). State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable And Sustainable Energy Reviews, 20, 619-641.
DOI 10.1016/j.rser.2012.11.061

Mia, A., Murad, W., Ahmad, F., & Uddin, K. (2017). Waste Management & Quality Assessment of Footwear Manufacturing Industry in Bangladesh: An Innovative Approach. International Journal Of Engineering Management, 7. Retrieved 11 November 2020, from

Mkhize, N., Sithole, B., & Ntunka, M. (2015). Heterogeneous Acid-Catalyzed Biodiesel Production from Crude Tall Oil: A Low-Grade and Less Expensive Feedstock. Journal Of Wood Chemistry And Technology, 35(5), 374-385.
DOI 10.1080/02773813.2014.984079

Morales, S., Miranda, R., Bustos, D., Cazares, T., & Tran, H. (2014). Solar biomass pyrolysis for the production of bio-fuels and chemical commodities. Journal Of Analytical And Applied Pyrolysis, 109, 65-78.
DOI 10.1016/j.jaap.2014.07.012

Murugan, S., Ramaswamy, M., & Nagarajan, G. (2008). The use of tyre pyrolysis oil in diesel engines. Waste Management, 28(12), 2743-2749.
DOI 10.1016/j.wasman.2008.03.007

National Center for Biotechnology Information. (2020a). PubChem Compound Summary for CID 31292, Octadecanamide. Retrieved 27 September 2020, from

National Center for Biotechnology Information. (2020b). PubChem Compound Summary for CID 8214, 13-Docosenamide, (13Z)-. Retrieved 27 September 2020, from

Olazar, M., Lopez, G., Amutio, M., Elordi, G., Aguado, R., & Bilbao, J. (2009). Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. Journal Of Analytical And Applied Pyrolysis, 85(1-2), 359-365.
DOI 10.1016/j.jaap.2008.10.016

Perondi, D., Scopel, B., Collazzo, G., Silva, J., Botomé, M., & Dettmer, A. et al. (2016). Characteristics of Pyrolysis Products from Waste Tyres and Spent Foundry Sand Co-Pyrolysis. Progress In Rubber Plastics And Recycling Technology, 32(4), 213-240.
DOI 10.1177/147776061603200403

Pham, X., Piriou, B., Salvador, S., Valette, J., & Van de Steene, L. (2018). Oxidative pyrolysis of pine wood, wheat straw and miscanthus pellets in a fixed bed. Fuel Processing Technology, 178, 226-235.
DOI 10.1016/j.fuproc.2018.05.029

Portuguese Shoes. (2018). World Footwear Yearbook: Intelligence to drive your business. Portuguese Shoes

Rodrigues, R., Marcilio, N., Trierweiler, J., Godinho, M., & Pereira, A. (2010). Co-Gasification of Footwear Leather Waste and High Ash Coal: A Thermodynamic Analysis. In The 27th Annual International Pittsburgh coal conference. Istanbul. Retrieved 12 November 2020, from

Ronsse, F., van Hecke, S., Dickinson, D., & Prins, W. (2012). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104-115.
DOI 10.1111/gcbb.12018

Sethuraman, C., Srinivas, K., & Sekaran, G. (2013). Double Pyrolysis of Chrome Tanned Leather Solid Waste for Safe Disposal and Products Recovery. International Journal Of Engineering Research, 4. Retrieved 11 November 2020, from

Sethuraman, C., Srinivas, K., & Sekaran, G. (2014). Pyrolysis coupled pulse oxygen incineration for disposal of hazardous chromium impregnated fine particulate solid waste generated from leather industry. Journal Of Environmental Chemical Engineering, 2(1), 516-524.
DOI 10.1016/j.jece.2013.10.006

Sharuddin, S., Abnisa, F., Daud, W., & Aroua, M. (2016). A review on pyrolysis of plastic wastes. Energy Conversion And Management, 115, 308-326. Retrieved 11 November 2020, from

Sørum, L., Grønli, M., & Hustad, J. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80(9), 1217-1227.
DOI 10.1016/s0016-2361(00)00218-0

Staikos, T., Rahimifard, S., Heath, R., & Haworth, B. (2006). End-of-life management of shoes and the role of biodegradable materials. In Proceedings of the 13th CIRP international conference on Life Cycle Engineering (LCE) (pp. 497–502). Bardos; Loughborough: Centre for Sustainable Manufacturing and Recycling Technologies (SMART). Retrieved 12 November 2020, from

Wei, X., Koo, I., Kim, S., & Zhang, X. (2014). Compound identification in GC-MS by simultaneously evaluating the mass spectrum and retention index. The Analyst, 139(10), 2507-2514.
DOI 10.1039/c3an02171h

Weldekidan, H., Strezov, V., & Town, G. (2018). Review of solar energy for biofuel extraction. Renewable And Sustainable Energy Reviews, 88, 184-192.
DOI 10.1016/j.rser.2018.02.027

Xiao, R., & Yang, W. (2013). Influence of temperature on organic structure of biomass pyrolysis products. Renewable Energy, 50, 136-141.
DOI 10.1016/j.renene.2012.06.028

Yılmaz, O., Cem Kantarli, I., Yuksel, M., Saglam, M., & Yanik, J. (2007). Conversion of leather wastes to useful products. Resources, Conservation And Recycling, 49(4), 436-448.
DOI 10.1016/j.resconrec.2006.05.006

Zhang, Q., Chang, J., Wang, T., & Xu, Y. (2007). Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion And Management, 48(1), 87-92.
DOI 10.1016/j.enconman.2006.05.010