an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Benjamin Piribauer - Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Austria
  • Thomas Laminger - Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Austria
  • Wolfgang Ipsmiller - Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Austria
  • Daniel Koch - Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Austria
  • Andreas Bartl - Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Austria

DOI 10.31025/2611-4135/2019.13873

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher

Editorial History

  • Received: 15 Jul 2019
  • Revised: 21 Oct 2019
  • Accepted: 23 Oct 2019
  • Available online: 06 Dec 2019


Dealing with the pollution of plastics into the environment is considered one of the major challenges of the current century. Especially microplastic pollutions are considered a significant threat to human life, especially since once these plastic particles make their way into the environment, removing them is almost impossible. Unfortunately, when researches look for microplastics in the environment, synthetic fibres are too often disregarded. This is a mistake considering that a big part of human clothing consists purely of synthetic fibres, meaning they are omnipresent in every part of human activity and so are their emissions. This work takes a critical look at the state of the art analysis methods for microplastics in soil, water and air, with a special focus on their ability (or inability) to detect fibrous materials. A case study in the form of a critical evaluation was made to highlight common problems when detecting microplastic fibres, it focused primarily on the sampling of large water volumes. Another case study explores the difficulties of microscopy in the analysis of microplastics. Furthermore, the sources of fibre pollution and which pathways they take in the environment before the end up in the maritime system are explored. Finally, this work makes a call for the creation and enforcement of standardized methods, which would potentially solve many of the current problems.



Adam, V., Yang, T., & Nowack, B. (2019). Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters. Environ Toxicol Chem, 38(2), 436-447.
DOI 10.1002/etc.4323

Almeida, S. M., Farinha, M. M., Ventura, M. G., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2007). Measuring air particulate matter in large urban areas for health effect assessment. Water, Air, and Soil Pollution, 179(1), 43-55.
DOI 10.1007/s11270-006-9146-6

Ambrosini, R., Azzoni, R. S., Pittino, F., Diolaiuti, G., Franzetti, A., & Parolini, M. (2019). First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environmental Pollution.
DOI 10.1016/j.envpol.2019.07.005

Arthur, C., Baker, J. E., & Bamford, H. A. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA. Retrieved from

Bertling, J., Hamann, L., & Bertling, R. (2018). Kunststoffe in der Umwelt: Mikro- und Makroplastik

BISFA. (2017). TERMINOLOGY OF MAN-MADE FIBRES. Retrieved from Brussels:

Carbery, M., O’Connor, W., & Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int, 115, 400-409.
DOI 10.1016/j.envint.2018.03.007

Carpenter, E. J., & Smith, K. L. (1972). Plastics on the Sargasso Sea Surface. Science, 175(4027), 1240.
DOI 10.1126/science.175.4027.1240

Chemiefaser, I. (2018, June 26, 2018). Worldwide production volume of chemical and textile fibers from 1975 to 2018 (in 1,000 metric tons). Retrieved from

Chemiefaser, I. (2019a, June 26, 2019). Global chemical fiber production from 2000 to 2018, by fiber type (in 1,000 metric tons) Retrieved from

Chemiefaser, I. (2019b, August 1, 2018). Production of polyester fibers worldwide from 1975 to 2017 (in 1,000 metric tons). Retrieved from

Comission, E. (2011). Commission Recommendation of 18 October 2011 of the definition of nanomaterial (2011/696/EU). Official Journal of the European Union, 54, 38-40

Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of The Total Environment, 671, 411-420.
DOI 10.1016/j.scitotenv.2019.03.368

Council, N. C. (2018, August 1, 2018). Global cotton production volume from 1990 to 2018 (in 1,000 bales). Retrieved from

Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut, 221, 453-458.
DOI 10.1016/j.envpol.2016.12.013

Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104(1), 290-293.
DOI 10.1016/j.marpolbul.2016.01.006

Eyerer, P., Hirth, T., & Elsner, P. (2008). Polymer Engineering: Springer-Verlag Berlin Heidelberg

Fisher, J. W., Hogan, J. A., Delzeit, L., Liggett, T., Wignarajah, K., Alba, R., . . . Fox, T. G. (2008). Waste Management Technology and the Drivers for Space Missions. In: SAE International

Gasperi, J., Wright, S. L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., . . . Tassin, B. (2018). Microplastics in air: Are we breathing it in? Current Opinion in Environmental Science & Health, 1, 1-5.
DOI 10.1016/j.coesh.2017.10.002

GESAMP. (2015). Sources, fate and effects of microplastics in the marine environment: a global assessment. Retrieved from

Hantoro, I., Lohr, A. J., Van Belleghem, F., Widianarko, B., & Ragas, A. M. J. (2019). Microplastics in coastal areas and seafood: implications for food safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 36(5), 674-711.
DOI 10.1080/19440049.2019.1585581

Hartline, N. L., Bruce, N. J., Karba, S. N., Ruff, E. O., Sonar, S. U., & Holden, P. A. (2016). Microfiber Masses Recovered from Conventional Machine Washing of New or Aged Garments. Environ Sci Technol, 50(21), 11532-11538.
DOI 10.1021/acs.est.6b03045

He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172.
DOI 10.1016/j.trac.2018.10.006

He, P., Chen, L., Shao, L., Zhang, H., & Lü, F. (2019). Municipal solid waste (MSW) landfill: A source of microplastics? -Evidence of microplastics in landfill leachate. Water Research, 159, 38-45.
DOI 10.1016/j.watres.2019.04.060

Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075.
DOI 10.1021/es2031505

Kusters, K. A., Pratsinis, S. E., Thoma, S. G., & Smith, D. M. (1993). Ultrasonic fragmentation of agglomerate powders. Chemical Engineering Science, 48(24), 4119-4127.
DOI 10.1016/0009-2509(93)80258-R

Liebmann, B. (2015). Mikroplastik in der Umwelt - Vorkommen, Nachweis und Handlungsbedarf. In: Umweltbundesamt GmbH

Mai, L., Bao, L. J., Shi, L., Wong, C. S., & Zeng, E. Y. (2018). A review of methods for measuring microplastics in aquatic environments. Environ Sci Pollut Res Int, 25(12), 11319-11332.
DOI 10.1007/s11356-018-1692-0

Miele. (2019). Operating instructions for condenser dryers M.-Nr. 09 938 570. Retrieved from

Miklos, D., Obermaier, N., & Jekel, M. (2016). Mikroplastik: Entwicklung eines Umweltbewertungskonzepts. Retrieved from Dessau-Rosslau:

Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ Sci Technol, 50(11), 5800-5808.
DOI 10.1021/acs.est.5b05416

Napper, I. E., & Thompson, R. C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar Pollut Bull, 112(1-2), 39-45.
DOI 10.1016/j.marpolbul.2016.09.025

Park, T. (2016). Microbeads: How did companies respond? Retrieved from

Pauly, J., Stegmeier, S., Allaart, H., Cheney, R., Zhang, P., Mayer, A., & Streck, R. (1998). Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol Biomarkers Prev, 7(5), 419-428

Pirc, U., Vidmar, M., Mozer, A., & Krzan, A. (2016). Emissions of microplastic fibers from microfiber fleece during domestic washing. Environ Sci Pollut Res Int, 23(21), 22206-22211.
DOI 10.1007/s11356-016-7703-0

Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment, 643, 1644-1651.
DOI 10.1016/j.scitotenv.2018.08.102

PlasticsEurope. (2018). Plastics – the Facts 2018. Retrieved from Wemmel – Belgium:

Prata, J. C. (2018). Airborne microplastics: Consequences to human health? Environmental Pollution, 234, 115-126.
DOI 10.1016/j.envpol.2017.11.043

Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159.
DOI 10.1016/j.trac.2018.10.029

Rochman, C. M. (2015). The Complex Mixture, Fate and Toxicity of Chemicals Associated with Plastic Debris in the Marine Environment. In M. Bergmann, L. Gutow, & M. Klages (Eds.), Marine Anthropogenic Litter (pp. 117-140). Cham: Springer International Publishing

Sandip, V. P., & Narsingh, R. P. (2007). Microfibres, Microfilaments and their applications. AUTEX Research Journal, 7(3)

Schmiedgruber, M., Hufenus, R., & Mitrano, D. M. (2019). Mechanistic understanding of microplastic fiber fate and sampling strategies: Synthesis and utility of metal doped polyester fibers. Water Research, 155, 423-430.
DOI 10.1016/j.watres.2019.02.044

Schwaferts, C., Niessner, R., Elsner, M., & Ivleva, N. P. (2019). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends in Analytical Chemistry, 112, 52-65.
DOI 10.1016/j.trac.2018.12.014

Sular, V., & Devrim, G. (2019). Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses. Fibres and Textiles in Eastern Europe, 27, 100-111.
DOI 10.5604/01.3001.0012.7751

Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B.-J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37.
DOI 10.1016/j.watres.2018.12.050

Talvitie, J., Mikola, A., Koistinen, A., & Setala, O. (2017). Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res, 123, 401-407.
DOI 10.1016/j.watres.2017.07.005

Talvitie, J., Mikola, A., Setala, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? - A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res, 109, 164-172.
DOI 10.1016/j.watres.2016.11.046

Textor, T., Derksen, L., Bahners, T., Gutmann, J. S., & Mayer-Gall, T. (2019). Abrasion resistance of textiles: Gaining insight into the damaging mechanisms of different test procedures. Journal of Engineered Fibers and Fabrics, 14, 1558925019829481.
DOI 10.1177/1558925019829481

Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., . . . Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science, 304(5672), 838.
DOI 10.1126/science.1094559

US Environmental Protection Agency. (1982). Handbook for Sampling and Sample Preservation of Water and Wastewater. Cincinetti, Ohio: BiblioGov

Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res, 112, 93-99.
DOI 10.1016/j.watres.2017.01.042