an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

A COMPARATIVE STUDY OF REAL-TIME MONITORING DETECTION AND ACTIVE SAMPLING MEASUREMENTS IN EVALUATING EXPOSURE LEVELS TO AMMONIA.

  • Patricia Battais - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Francis Bonthoux - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Sullivan Lechêne - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Juliette Kunz-Iffli - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Nathalie Monta - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Jérôme Grosjean - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Philippe Duquenne - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France

Released under CC BY-NC-ND

Copyright: © 2022 CISA Publisher


Abstract

Occupational exposure to ammonia is an important issue in the waste management sector, especially in composting and anaerobic digestion plants. In this sector, operators can be exposed to high contents of ammonia which is important to assess. The aim of this work was to provide a comparative study of two ammonia measurement techniques in the workplace air. The first one is an offline active collection of air samples that are then brought to laboratory for analysis and whose results are comparable to OELs. The second one involves real-time monitoring which is easy to deploy, allows for data to be processed both quickly and directly and to explain exposure peaks relative to workers’ activity. These two techniques were simultaneously deployed in several anaerobic digestion-composting plants to assess operators’ potential exposure to ammonia, and data were compared. Results show that there are linear correlations between concentrations obtained from both methods, with a trend to overestimate real concentrations in ammonia for several real-time detectors. This trend could however be explained by the time needed for exposure peaks to decrease. Real-time gas detectors, if cautiously used, are good investigation tools to quickly confirm or invalidate the presence of ammonia in the workplace atmosphere, and for both studying and optimising the workplace. The combination of both online and offline methods facilitates the analysis of a work area or station in order to improve the efficiency of prevention measures and to provide an accurate quantification of operators’ exposure for compliance checking of OELs.

Keywords


Editorial History

  • Received: 25 Mar 2022
  • Revised: 07 Sep 2022
  • Accepted: 29 Sep 2022
  • Available online: 23 Oct 2022

References

ADEME, Dabert, P., Dirrenberger, P., De Guardia, A., Bonthoux, F., Rincon, C., Lechêne, S., Silvente, E. (2019). Maîtrise des émissions d'Ammoniac en usine de Méthanisation-compostage de déchets. Biodéchets et effluents organiques. Available at https://librairie.ademe.fr/dechets-economie-circulaire/4251-mambo-maitrise-des-emissions-d-ammoniac-en-usine-de-methanisation-compostage-de-biodechets-et-d-ordures-menageres-residuelles.html

ANSES. (2018). Avis de l’ANSES relatif à l’élaboration de VTR aiguë, subchronique et chronique par voie respiratoire pour l’ammoniac (CAS n°7664-41-7) disponible sur : https://www.anses.fr/fr/system/files/VSR2016SA0118Ra.pdf

Bakhiyi, B., Marchand, G., Cloutier, Y., Beaudet, Y., Veillette, M., Dubuis, M. E., M’barèche, H., Zayed, J., Duchaine, C., Lavoie, J. (2018). Exposition des travailleurs aux substances chimiques et aux agents biologiques dans les usines de biométhanisation des matières organiques putrescibles - Évaluation exploratoire. Beck-Friis, B., Smars, S., Jonsson, H., Eklind, Y., Kirchmann, H. (2003). Composting of source-separated household organics at different oxygen levels: Gaining an understanding of the emission dynamics Compost Science & Utilization, 11(1), 41-50

Bishop, R. W., Belkin, F., Gaffney, R. (1986). Evaluation of a new ammonia sampling and analytical procedure. Am Ind Hyg Assoc J, 47(2), 135-137.
DOI 10.1080/15298668691389450

Damien, A. (2016). Guide du traitement des déchets - 7e éd : Réglementation et choix des procédés. Dunod, 269-279

de Guardia, A., Mallard, P., Teglia, C., Marin, A., Le Pape, C., Launay, M., Benoist, J. C., Petiot, C. (2010a). Comparison of five organic wastes regarding their behaviour during composting: part 1, biodegradability, stabilization kinetics and temperature rise. Waste Manag, 30(3), 402-414.
DOI 10.1016/j.wasman.2009.10.019

de Guardia, A., Mallard, P., Teglia, C., Marin, A., Le Pape, C., Launay, M., Benoist, J. C., Petiot, C. (2010b). Comparison of five organic wastes regarding their behaviour during composting: part 2, nitrogen dynamic. Waste Manag, 30(3), 415-425.
DOI 10.1016/j.wasman.2009.10.018

de Guardia, A., Petiot, C., Rogeau, D., Druilhe, C. (2008). Influence of aeration rate on nitrogen dynamics during composting. Waste Manag, 28(3), 575-587.
DOI 10.1016/j.wasman.2007.02.007

Dirrenberger, P. (2020a). Méthanisation (Partie 1) : Principe, paramètres et polluants émis – Etat de l’art. Techniques Sciences Méthodes, 9, 15-30

Dirrenberger, P. (2020b). Méthanisation (Partie 2) : Technologies de digestion et procédés utilisés – Etat de l’art. Techniques Sciences Méthodes, 9, 33-56

Dirrenberger, P., Nicot, T., Kunz-Iffli, J., Monta, N., Grosjean, J., Galland, B. (2018). Evaluation de l’exposition à l’ammoniac : apport de la détection en temps réel. Hygiène et sécurité du travail, 252, 66-72

Fukumoto, Y., Osada, T., Hanajima, D., Haga, K. (2003). Patterns and quantities of NH(3), N(2)O and CH(4) emissions during swine manure composting without forced aeration--effect of compost pile scale. Bioresour Technol, 89(2), 109-114.
DOI 10.1016/s0960-8524(03)00060-9

Handbook of chemistry and physics - CRC. (2008). 89e ed., 2736, 10-205

INRS. (2009). Les détecteurs portables à photo-ionisation pour la sécurité et l’hygiène des lieux de travail. ED6053

INRS. (2011). Détecteurs portables de gaz et de vapeurs. Guide de bonnes pratiques pour le choix, l’utilisation et la vérification. ED 6088

INRS. (2013). Méthanisation de déchets issus de l'élevage, de l'agriculture et de l'agroalimentaire. ED6153

INRS. (2016a). Ammoniac et sels d’ammonium., Fiche Metropol M-13, available at http://www.inrs.fr

INRS. (2016b). Valeurs limites d’exposition professionnelle aux agents chimiques en France. Aide mémoire technique., ED 984, available at http://www.inrs.fr

INRS. (2018). Fiche toxicologique : Ammoniac et solutions aqueuses. FT16, available at http://www.inrs.fr

Moletta, R. (2015). La méthanisation (3° Éd.). Tec & Doc Lavoisier, 528

NIOSH. (2019). https://www.cdc.gov/niosh/topics/ammonia/default.html#:~:text=High%20levels%20of%20ammonia%20can,duration%2C%20and%20work%20being%20done

OSHA. (2002). Ammonia in Workplace Atmospheres - Solid Sorbent. Available at https://www.osha.gov/dts/sltc/methods/inorganic/id188/id188.html#ref83

Poirot, P., Duquenne, P., Grosjean, J., Monta, N., Nicot, T., Zimmermann, F., Koehler, V. (2010). Approche des risques chimiques et microbiologiques dans le secteur du compostage. Hygiène et sécurité du travail, 221, 3-16

Pöther, D.-C., Schneider, D., Prott, U., Karmann, J., Klug, K., Heubach, N., Hebisch, R., Jäckel, U. (2021). Multiplexed Workplace Measurements in Biogas Plants Reveal Compositional Changes in Aerosol Properties. Annals of Work Exposures and Health.
DOI 10.1093/annweh/wxab036

Spinelle, L., Gerboles, M., Kok, G., Persijn, S., Sauerwald, T. (2017). Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors, 17(7), 1520. https://www.mdpi.com/1424-8220/17/7/1520

Sundblad, B. M., Larsson, B. M., Acevedo, F., Ernstgard, L., Johanson, G., Larsson, K., Palmberg, L. (2004). Acute respiratory effects of exposure to ammonia on healthy persons. Scand J Work Environ Health, 30(4), 313-321.
DOI 10.5271/sjweh.800

Timmer, B., Olthuis, W., Berg, A. v. d. (2005). Ammonia sensors and their applications—a review. Sensors and Actuators B: Chemical, 107(2), 666-677.

Xu, Z., Guo, L., Wang, D., Bi, Z., Fu, Z. (2020). Sampling and analysis of airborne ammonia in workplaces of China. J Occup Health, 62(1), e12100.
DOI 10.1002/1348-9585.12100

Zeshan, S. (2012). Dry anaerobic digestion of municipal solid waste and digestate management strategies Asian Institute of Technology