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ABSTRACT
According to the Directive (EU) 2018/851 of the European Union, higher recycling 
rates for municipal waste will have to be met in the near future. Beside improvements 
to the collection systems, the efficiency of mechanical processing and sorting will 
have to be increased to reach the EU´s targets. Sensor-based sorting (SBS) plants 
constitute an integral part of today’s sorting processes. Two main factors determine 
the sorting performance: throughput rate and input composition. To improve recy-
cling efficiencies, especially SBS machines need to be optimized. Three evaluation 
criteria are used to describe the performance of these processes: recovery (content 
of input material – both eject and reject material discharged into the product frac-
tion) or product quantity (amount of product generated via sorting within a specific 
interval – calculated by multiplying throughput rate and yield), yield (amount of eject 
material discharged into the product fraction), and product purity. For this study, 160 
sorting experiments each with 1,000 red and white low-density polyethylene (LDPE) 
chips were conducted to investigate the effects of throughput rate and input com-
position on sorting processes. This simplified approach reduced the influence of 
other factors on the sorting performance, giving precise information on the effect of 
throughput rate and input composition. The testing results can enter process opti-
mization. With increasing throughput rates, product quantity rises following a satu-
ration graph (despite exponential decrease in recovery). In the experiments a higher 
throughput rate also resulted in an exponential decrease of the yield while a change 
to the input composition had no such effect. The third evaluation criteria, product pu-
rity, decreases linearly with increasing occupation density. The slope of this function 
depends on the input composition.

1. INTRODUCTION
16.3 million tons (170 kg/capita) of plastic packaging 

waste (PPW) are produced in the European Union (EU) 
per year, out of which as little as 42 wt% were recycled in 
2016 according to Eurostat, 2019. E. g. by 2025, the EU 
also aims to increase the rate for preparing for re-use and 
the recycling of municipal waste to 55 wt% (The Europe-
an Parliament and of the Council of the European Union, 
2018).

PPW-recycling requires separation into individual plas-
tic types (International Organization for Standardization, 
2008). Plastics are usually separated using sensor-based 
sorting (SBS) (Gundupalli et al., 2017; Jansen et al., 2012). 
Spectral imaging techniques including NIR (near-infra-
red, 750-1100  nm (Workman and Springsteen, 1998), 
VIS (visual image spectroscopy, 380-750  nm (Workman 
and Springsteen, 1998) and HSI (hyperspectral imaging) 

are most commonly applied though laser-induced-break-
down-spectroscopy and X-ray-sorting are available as 
well (Table 1).

SBS techniques have been utilised by various indus-
tries during the last years. Additionally, research results 
were published in many papers. SBS is mostly applied in 
recycling (Gundupalli et al., 2017; Mesina et al., 2007; Rah-
man et al., 2014), mining (Knapp et al., 2014; Lessard et al., 
2014; Dalm et al., 2014) and food (Alaya et al., 2019; Cu-
bero et al., 2011; Tu et al., 2007) processing plants. Sound 
information on the sorting performance of such technolo-
gies is limited, however.

One key parameter found fluctuating in industrial SBS 
plants is their throughput rate adversely affecting their 
sorting efficiency (Feil et al., 2019). The throughput rate, in 
tons per hour, is related to the occupation density (the rela-
tive size of the detection zone in an SBS unit that is covered 
with particles), in %. With respect to SBS, the occupation 
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density is a better indicator of capacity than the through-
put rate. The reason is that an SBS unit operates differently 
from other processing technology. Objects must here be 
presented separately to a sensor enabling a particle-spe-
cific sorting decision (eject or reject) by the computing 
technology. The spatial separation of objects is therefore 
of utmost importance. Their mass, high or low, in compar-
ison to other particles in the material stream, is irrelevant. 
The performance of an SBS unit is accordingly related to 
the space particles occupy in the detection zone and only 
indirectly correlated with the throughput rate. This paper 
therefore applies, the occupation density rather than the 
throughput rate as a reference parameter to describe the 
capacity of an SBS machine. For industrial applications, 
conversion into throughput rates considering material-spe-
cific grammages is otherwise required. 

Fluctuations of the occupation density mostly result 
from batch processes integrated into an SBS plant, e.g. 
opening packages or bales. A second key parameter found 
fluctuating in SBS plants is input composition, because of 
the delivery of input material from different (urban/rural) 
regions.

Variations in occupation density and input compo-
sition, as well as other factors like surface moisture and 
roughness (Küppers et al., 2019b), and mechanical stress 
(Küppers et al., 2019a) can affect the purity and recovery of 
products in two ways:

• Errors in detection, recognition and classification of 
particles (sensor and algorithm);

• Errors in mechanical discharge (conveyor belt, chute, 
pressurized air nozzle bar).

On the one hand, a high occupation density, or through-
put rate, may impact the recovery and purity of the output 
as overlapping particles impede the analysis of the under-
lying material. Restrictions and a significantly reduced belt 
speed on standard sorting machines are required especial-
ly for sorting light and flat materials, such as films, because 
of their low weight and high surface coverage (Beel, 2017). 
On the other hand, high throughput rates are desirable to 
produce large amounts of products in a short time to be 
economically sound. No systematic study on the effects of 
occupation density on SBS of plastics has been conducted 
yet, however.

The two main factors affecting SBS efficiency, i.e. input 
composition and occupation density, were addressed in 
systematic testing series. Data hereby obtained provides 

insight for better understanding of the efficiency of SBS 
processes.

2. MATERIAL AND METHODS
2.1 Materials

1,000 rectangular LDPE chips (white and red) were used 
as input material, each featuring an investigated visible 
surface area of approx. 18.3 cm², a width of 30 mm, an av-
erage length of 61 mm and a thickness of 3 mm (Figure 1). 

The grammage of these chips amounts to 0.27 g/cm² 
and the average particle weight is 4.9 g. In the conducted 
experiments, white particles were regarded as ‘eject’ and 
supposed to be discharged via air shocks while red par-
ticles were considered as ‘reject’ and not supposed to be 
discharged.

2.2 Equipment
An experimental SBS setup, engineered by Binder+Co 

AG, was utilized to conduct a total of 160 sorting experi-
ments. As shown in Figure 2, this testing setup consisted 
of a chute sorter, of a work width and length of 500 mm and 
455 mm, respectively, and an upstream vibrating conveyor 
to feed the sample material. The resolution of the colour 
sensor is to 0.523 mm x 0.473 mm/px. The valve resolution 
is 6.25 mm.

Once on the chute, the bulk material was detected us-
ing the built in VIS sensor and then classified by means of 
colour, intensity and brightness. If classified eject material, 
the respective object was discharged via the compressed 
air nozzle bar. Any detected object > 35 mm, e.g. multi-
ple particles overlapping, was digitally divided into several 
objects and then classified individually to be rejected or 
ejected.

2.3 Preliminary Tests
Preliminary detection tests were carried out to evalu-

ate the content of falsely classified pixels of reject (red) 
and eject (white) particles. A series of five trial runs was 

Eddy 
current LIBS X-ray 

sort
Optical 

sort
Spectral 

sort

Non-ferrous 
metal ✔ ✔ ✔ ✔ ✔

Plastic ✔ ✔ ✔

Paper ✔

Glass ✔ ✔

Wood ✔ ✔

TABLE 1: Sorting techniques applicable to different types of waste 
(mod. Gundupalli et al., 2017).

FIGURE 1: Testing material for sorting experiments - red (reject, 
left) and white (eject, right) LDPE chips.
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conducted featuring 1,000 particles for each particle type 
(eject/reject). Each time, the content of correctly and incor-
rectly classified pixels was recorded.

Additionally preliminary ejection tests were carried out 
to determine the average amount of incorrect discharges 
based on variable sliding speeds, sideways movement, er-
ratic bouncing, etc. on the chute. For this purpose, in five 
runs each including 1,000 particles supposed to be dis-
charged, were fed to the sorting machine and overlapping 
of particles was avoided by feeding the particles one by 
one to the vibration conveyor, ensuring 100% particle sepa-
ration. As a result of this approach, the occupation density 
remained below 2.8% for all preliminary ejection tests. This 
enabled assessing the effect of purely mechanically-based 
sorting errors. The results of the preliminary tests were 
evaluated by counting the number of falsely rejected and 
correctly ejected particles.

2.4 Main Experiments
To study the effects of input composition on sorting ef-

ficiency, eight samples of different composition were creat-
ed (Table 2), each containing a total of 1,000 chips.

On average, this resulted in 5,500,000 detected ob-
ject pixels per test run, with a standard deviation of about 
200,000 pixels, provided that no particles overlapped. The 
standard deviation σ was calculated using the following 
equation, where x is the sample mean, x̅ is the arithmetic 

mean and n is the sample size.

(1)

Each of the eight samples was sorted 20 times at vary-
ing throughput rates. For each experiment, the respective 
sample mixture of 1,000 particles was placed on the vibra-
tion conveyor and fed to the sorting machine by starting 
the vibration conveyor after adjusting its potentiometer 
to the intended testing period. After each experiment the 
number of ejected and rejected particles (red and white) 
was determined by manual sorting. 

Each experiment required a steady feed, since fluctua-
tions of the throughput rate would have resulted in shifting 
occupation densities, compromising analysis of the results. 
The testing period of each experiment could therefore devi-
ate slightly from the intended value. The testing periods of 
the 20 experiments were as evenly distributed as possible 
for each input composition, ranging from 1.0 s to 70.6 s. 
Table 3 shows the relationship of testing period, occupa-
tion density and throughput rate per metre of working width.

The occupation density is defined as the ratio of de-
tected object area and available space on the detection 
area for the testing period. Available space is calculated 
using the following equation with A=available area, υ=sliding 
speed of particles at the point of detection (1321 mm/s), 
t=testing period (cf. Table 3) and w=working width (500 mm).

A =υ * t * w [m²]    (2)

After each experiment the particles were thoroughly mi-
xed to generate a uniform blend of all 1,000 particles desig-
ned as input material for the next experiment.

2.5 Evaluation of Results
The results were analysed based on three evaluation 

criteria attained at the respective throughput rate of each 
trial: 

• Recovery (directly related to product quantity);
• Yield; 
• Purity.

Sample number Sample name Red particles White particles

1 (95/5) 950 50

2 (90/10) 900 100

3 (85/15) 850 150

4 (80/20) 800 200

5 (70/30) 700 300

6 (60/40) 600 400

7 (50/50) 500 500

8 (20/80) 200 800

TABLE 2: Generated samples and their composition.

FIGURE 2: Setup for SBS sorting experiments.
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Recovery (R) is defined as the ratio of complete product 
mass (meject) and total input mass (minput) per time unit, pro-
viding information on the product quantity generated at a 
respective throughput rate:

      (3)

Product quantity is directly related to recovery, expres-
sed by the mathematical product of throughput rate (Table 
3) and recovery (Figure 3) for a given occupation density:

      (4)

The yield (Rw) is based on the amount of the desired com-
ponent (eject) in the feed material and calculated from the 
ratio of the mathematical product of determined mass flow 
(moutput) and substance concentration (coutput) of the respec-
tive sorting product (output) to the respective product of 
mass (minput) and substance concentration (cinput, defined as 
the content of eject material in the input material) of the feed 
material (input). It is calculated as follows (Feil et al., 2016): 

      (5)

According to Feil et al. (2016), the purity (Pm) of a mate-
rial is defined as the content of correctly ejected material in 
the sorting product. It is calculated as follows:

      (6)

All three performance indicators are usually mass-

specific [w%]. When evaluating SBS sorting experiments, 
however, particle-related [p%] information is more useful, 
meaning that a sorting stage is evaluated based on the 
number of particles contained in each output fraction 
(reject and eject) and not on the mass of the respective 
fraction. Conclusions on mass-specific evaluation criteria 
can be obtained by providing the average particle-specific 
mass. Particle-related evaluation criteria are displayed ac-
cordingly in this paper.

3. RESULTS AND DISCUSSION
3.1 Preliminary Tests

During the preliminary detection tests, an average of 
0.87% of the pixels of white objects and 0.65% of the pixels 
of red objects were falsely classified, the edges of objects 
being most commonly affected. Since all objects contai-
ning > 50% pixels of the eject material are discharged and 
misclassification is evenly distributed among all particles, 
the misclassification rate is not significant for the dischar-
ge of objects.

Although misclassification did not result in a rejec-
tion of particles, 0.28% to 0.44% of all eject particles were 
rejected in the preliminary ejection test. These amounts of 
falsely rejected particles were only the result of mechanical 
errors, because quite low throughput rates had been cho-
sen, overlapping cannot be a reason for rejection. The con-
tents of incorrectly detected and incorrectly rejected parti-
cles were therefore insignificant for the used experimental 
setup. The subsequently conducted main experiments 
thus allow statements to be made about the best operation 
conditions of sorting stages in treatment plants applying 
SBS machinery that are based on input composition and 
occupation density of a sorting stage only.

3.2 Recovery and Product Quantity
The effects of occupation density on the recovery for 

different input compositions are displayed in Figure 3. Evi-
dently the recovery decreases with increasing occupation 
density. For rising eject shares of input, maximum recovery 
increases (usually at the lowest occupation density). 

Since industrial applications most often run at quite low 
occupation densities the graphs for recovery and product 
quantity in Figure 4 are displayed for occupation densities 
< 100%. Despite decreasing recovery, product quantity evi-
dently rises with increasing occupation density following a 
saturation graph. 

The slope of shown saturation graphs most often ap-
proaches zero when occupation densities reach 40% to 
60%. The higher the content of reject particles in the input, 
the earlier saturation is reached. The slopes of well-balan-
ced inputs (50/50 and 60/40) drop for higher occupation 
densities. When considering the option of increasing throu-
ghput, the result indicates that sorting at high throughput 
rates may only be reasonable for input material of a balan-
ced composition with regard to product quantity. For other 
input compositions, high occupation densities show less 
benefit in this regard.

In general, there are direct correlations observed 
between recovery and both occupation density and input 

Test duration 
[s]

Occupation density 
[%]

Throughput rate 
[t/(h*m)]

1 278.6 35.02

2 139.3 17.51

3 92.9 11.67

4 69.6 8.75

5 55.7 7.00

6 46.4 5.84

7 39.8 5.00

8 34.8 4.38

9 31.0 3.89

10 27.9 3.50

20 13.9 1.75

30 9.3 1.17

40 7.0 0.88

50 5.6 0.70

60 4.6 0.58

70 4.0 0.50

80 3.5 0.44

90 3.1 0.39

100 2.8 0.35

TABLE 3: Overview of testing period, occupation density and 
throughput rates.
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FIGURE 3: Effects of occupation density on recovery for different input compositions – occupation density < 300%.

composition (the content of particle-related eject in input) 
which may permit forecasting the product quantity as a 
function of influencing factors. Use Figure 4 to determine 
the occupation density that is most suitable for a reaso-
nable product quantity, depending on the respective input 
composition. Note that reject quantity increases with eject 
quantity.

3.3 Yield
The effect of occupation density on yield for different 

input compositions is given in Figure 5. With rising occu-
pation density, the yield decreases exponentially from ap-
prox. 98 p% to approx. 10 p% for all input compositions 
identically.

Since industrial applications most often run at occu-
pation densities <<100%, only the selected area shown in 
Figure 5 (blue frame), was taken into account for further 
analysis. Figure 5, therefore, gives the graph of the yield for 
all experiments at an occupation density <100%.

Additionally, the average yield is shown (red) as a 
polynomial function of the fourth degree with a coefficient 
of determination of R²=0.9417:

y = -5.0564x4 + 10.321x3 – 6.2344x2 + 0.2105x + 0.9784 (7)

The inflection points of this approximation function 
are located at occupation densities of 27.6% and 74.5%. 
The first inflection point is reached at an occupation den-
sity of about 30% where its rising value impairs the yield 

FIGURE 4: Effects of occupation density on recovery (left) and product quantity (right) for different input composition – occupation den-
sity <100%.
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very much. The second inflection point is reached at an 
occupation density of 75% when changes to its value 
have a much smaller impact on the yield. This is consi-
stent with a range of occupation densities chosen for 
calculating the average yield. Up to an occupation den-
sity of 100%, the yield decreases constantly. Beyond, the 
decrease subsides. If values >100% were included for the 
occupation density when calculating the approximation 
function, there was no drop of the polynomial function at 
an occupation density of 100%.

Figure 6 shows that the occupation density effects the 
separation of eject particles while the input composition 
has no effect on the yield. This information helps to deter-
mine the highest occupation density while still achieving 
acceptable eject losses that may be controlled by, e.g., a 
quota, independent of the input composition. 

Note that fluctuations of the yield increase significantly 
at occupation densities > 27%. This can be traced back to 
the elevated potential for overlapping as occupation densi-
ties increase since overlapping can either lead to eject los-
ses (reject particles covering eject particles leading to re-
duced yield by rejection of both particles) or to a discharge 
of reject particles (eject particles covering reject particles 
leading to increased yield by ejection of both particles).

3.4 Effects on the Sorting of Rejects - Purity
The effects of changes to the input composition and 

occupation density on the absolute number of reject parti-
cles wrongly sorted into the eject fraction are displayed in 
Figure 7. Up to 35 red particles were sorted incorrectly. For 
clarity purposes, only trend lines (concave growth curves) 
are shown alongside the raw data in Figure 7. 

FIGURE 5: Composition-related effects of occupation density on yield - occupation density < 300%.

FIGURE 6: Average effect of occupation density on yield - occupation density < 100%.
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The highest number of misclassifications was recorded 
for the quite balanced mixing ratios of 60/40, 50/50 and 
70/30, while the number of falsely ejected reject particles 
is smaller for imbalanced input compositions. In general, 
the slope of all graphs is much reduced at occupation den-
sities of around 30%. This means that the absolute number 
of incorrectly ejected reject particles is significantly less 
prone to increasing with rising occupation densities if the 
general level is > 30%.

As a result of the exponential decrease of recovery 
and the concave increase of the number of falsely ejected 
reject particles, a linear decrease of purity in the eject frac-
tions can be observed for increasing occupation densities 
(see Figure 8, right). With decreasing eject content in the 
input, the decline of eject purity worsens. 

A tendency to greater volatility can be observed for 
the input material if the content of eject particles is small. 
This trend is consistent with the sample size used for all 
experiments. For input samples with low contents of eject 

particles, even small numbers of falsely ejected reject par-
ticles constitute quite large amounts of impurities in the 
eject fraction. Fluctuations of the absolute numbers of in-
correctly ejected reject particles therefore rather affect the 
graphs of input samples with high content of reject parti-
cles than vice versa.

Figure 8 shows that, as eject content of the input of a 
sorting stage increases, the slope of the resulting linear 
graph softens. While the negative gradient of the linear fun-
ctions in principle increases with the reject content in the 
input, the magnitude of this change is not consistent. The 
graphs of the input samples 70/30 and 60/40 display an 
anomaly concerning the otherwise consistently increasing 
negative gradient of the linear graphs.

3.5 Economic Potential
This paper highlights the effects of input composition 

and throughput rate on recovery/product quantity, yield, 
and purity of the eject fraction from SBS stages. Better 

FIGURE 8: Effects of occupation density on eject purity for different input (left: raw data; right: mathematical fit) compositions – occupa-
tion density < 100%.

FIGURE 7: Influence of occupation density on the ejection of reject particles for different input compositions (left: raw data, right: mathe-
matical fit) – occupation density < 180%.



B. Küppers et al. / DETRITUS / Volume 09 - 2020 / pages 59-6766

knowledge of the interdependence of these variables was 
also acquired. 

When the accuracy of sensory detection and mecha-
nical efficiency is known, both datasets can be combined 
to assess the efficiency of SBS steps. Each input compo-
sition imposes an upper limit on the achievable recovery, 
the yield, and purity. This upper limit cannot be raised by 
changes to the experimental setup, say, be applying a bet-
ter sensor, since it is a function only of the ratio of eject to 
reject particles in the input stream.

To demonstrate the value of the ascertained results, Fi-
gure 9 shows a simplified sample application. The graphs 
(yellow= yield, red=eject purity and green=product quantity) 
are displayed for a certain input composition. 

It was assumed that the eject fraction, produced du-
ring this exemplary sorting stage, can be sold for different 
prices (100/80/60 €/t), depending on its purity (95/90/85 
wt%) achieved by sorting. For simplification purposes, as-
sume that the mass balance is in accordance with particle 
related composition.

Purity, quantity, and possible losses of the potential 
product must be considered to find out at which occupa-
tion density (throughput rate) the highest profit per hour is 
made. For every input material whose sorting step can be 
described with the graphs shown in Figure 9, the price and 
quality of the respective maximum product quantity can 
therefore be located at the secondary axis of Figure 9 (gre-
en arrows). In Table 4, the best occupation densities for 
meeting the quality requirements are given, including the 
corresponding product price, yield, product quantity and 
arising profit per hour.

Evidently, the highest obtainable profit is found at an 
occupation density of 44 %, even though the generated pro-
duct quantity is highest at an occupation density of 67% 
and the highest yield would be generated at an occupation 
density of 23%. Therefore, knowing the interdependencies 
of the described factors may help optimizing a sorting sta-
ge in the first place.

4. CONCLUSIONS
Evaluating the efficiency of an SBS machine without 

running sorting experiments, depends on a multitude of 
influencing factors. These factors can be divided into two 
categories that do not influence each other:

• Factors affecting the functionality of built-in sensors, 
reducing the content of particles that can be detected, 
recognised, and classified;

• Factors related to mechanical discharge issues, redu-
cing the efficiency of an SBS machine independent of 
the accuracy and suitability of built-in sensors.

The scientific results shown here provide a basis for 
assessing the efficiency of SBS units in sorting plants. Di-
splayed data comprises the predominant influencing fac-
tors (input composition and occupation density) affecting 
mechanical discharge issues. 

When combined with the sensor-specific efficiency (de-
pending on what a sensor is used for), these data can be 
used to predict the efficiency of a machine and maybe even 
the efficiency of many connected SBS machines.

The influence of input composition and throughput rate 
on sorting efficiency has been established using model 
mixtures sorted in an experimental setup at various throu-
ghput rates. The following main conclusions are based on 
the experimental series run with homogeneously shaped 
particles, evenly distributed particle weights and uniform 
particle size for eject and reject particles:

• Input composition does not affect the yield for any 
throughput rate/occupation density.

• With increasing occupation density/throughput rate, 
the yield decreases exponentially from approx. 98 p% 
to approx. 10 p%.

• The average yield, a function of the occupation density/
throughput rate, can be shown as a polynomial function 
of the fourth degree for occupation densities <100% 
(Figure 6).

FIGURE 9: Graphs of yield (yellow), eject purity (red) and product quantity (green) for a sample case; blue arrows – material value for a spe-
cific quality; yellow arrows – obtainable yield for a specific eject purity; green arrow – obtainable product quantity for a specific eject purity.
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Occupation density Quality requirement Product price Yield Product quantity Profit

23% 95 wt% 100 €/t 81 wt% 1,85 t/h 185 €/h

44% 90 wt% 80 €/t 56 wt% 2,78 t/h 222 €/h

67% 80 wt% 60 €/t 41 wt% 3,45 t/h 207 €/h

TABLE 4: Profit per hour with respective process and product parameters.

• As occupation density/throughput rate rises, product 
quantity increases (despite a decrease in recovery) fol-
lowing a saturation curve that reaches maximum for an 
occupation density of approx. 60% (Figure 4).

• Eject purity can be plotted as a descending linear func-
tion of occupation density/throughput rate. The slope 
of this function is related to the input composition.

• The higher the eject content in the input composition 
of an SBS stage, the smaller the slope of the related 
descending linear function (Figure 8).

Profounder datasets may be obtained in large scale 
experimental series using stable input compositions and 
longer test durations are advisable. Other influencing fac-
tors like grain size distribution of the input material, particle 
shape, and machine design should be examined to expand 
the dataset presented in this paper.

Actually material flows in sorting plants are subject to 
powerful fluctuations due to changes to the input compo-
sition and irregular material discharge of upstream pro-
cessing machinery. As has been shown here, such tem-
porarily fluctuating throughput rates can painfully reduce 
the sorting efficiency of SBS stages. Choosing processing 
machinery to regulate input rates and to discharge the out-
put fractions regularly can enhance the performance of 
downstream sorting stages at the same overall through-
put rate. Another option of how to reduce fluctuating input 
rates is using bunkers. Depending on the scope of fluctu-
ations, the required bunker volume may vary, causing high 
investment costs. This approach may not be feasible for 
material streams like light-weight packaging waste that, 
due to its non-bulk properties, could generate a blockage 
when stored in a bunker.
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