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ABSTRACT
Recycling of post-consumer packaging wastes involves a complex chain of activ-
ities, usually based on three main stages, that is: i) collection from households or 
recovery from Municipal solid waste (MSW), ii) sorting and, finally, iii) mechanical 
recycling. Among these activities contaminants detection and separation play a pre-
eminent role. The utilization of a Near InfraRed (NIR) – HyperSpectral Imaging (HSI) 
based methods, along with chemometrics and machine learning techniques, can 
fulfill both the two previously mentioned goals. In this paper, the HSI-based sorting 
logics, to apply, to implement, to set up and to perform an automatic separation of 
paper, cardboard, plastics and multilayer packaging are investigated. The built PLS-
DA-based cascading classification model allows to recognize polymeric fragments 
from cellulosic ones and to identify multi-layer materials (i.e. laminated plastic and 
laminated cardboard). The misclassified fragments are constituted by laminated 
plastics. The set up cascade model reached in prediction a Recognition and a Re-
liability of 0.933. The proposed NIR-HSI-based approach can represent an optimal, 
reliable and low-cost answer to systematically identify impurities and composite ma-
terials inside plastic waste streams.

1. INTRODUCTION
Post-consumer plastic packaging waste is one of 

the primary sources to recover polymers (Bonifazi et al., 
2015a). The recycling of this waste involves different com-
plex activities, involving the collection from households or 
the recovery from Municipal Solid Waste (MSW) of plastic 
packages and the further sorting and mechanical recycling 
to washed milled goods (Jansen et al., 2015).

The complexity of the processing phases is linked to 
the heterogeneity of this waste stream, mainly due to the 
presence of contaminants and cellulose fragments, and 
secondly to the presence of multi-layer materials. Those 
materials, for their characteristics, are difficult to separate 
by classical methods (i.e. gravimetric separation), thus 
ending up in the recovered plastics products.

The properties of waste materials, their characteris-
tics, and physical-chemical attributes can be investigated 
by using sensing devices that are able to acquire objects' 
spectral characteristics attributable to a specific wave-
length range. The further processing of these spectra can 
allow the identification of the object spectral signatures 
and their classification. This approach is currently used to 

set-up and develop on-line procedures aimed to recognize 
different materials occurring in a waste stream as they re-
sult after specific processing/selection actions (Bonifazi et 
al., 2009). In recent years, industrial operations concerning 
automated sorting of plastic packaging strongly increased 
thanks to technology improvement, especially that based 
on Near InfraRed-HyperSpectral Imaging (NIR-HSI) (Holl-
estein et al., 2015).

HSI, in fact, represents an attractive solution to char-
acterize, to control and to perform the quality control of 
different materials in many sectors, i.e. cultural heritage 
(Capobianco et Al., 2015; Agresti et Al., 2013), agricultural/
food industry (Serranti et Al., 2018a; Serranti et Al. 2018b; 
Kumaravelu and Gopal, 2015; Tsuchikawa and Kobori, 
2015), in the pharmaceutical and chemical industry (Rog-
go et Al. 2007; Larrechi et Al. 2003), and more generally 
in analytical science (Pasquini, 2003). In recent decades, 
HSI has emerged in the recycling sector (Bonifazi et Al. 
2015b; Serranti et Al. 2015; Serranti et Al. 2013; Palmieri 
et Al. 2014; Hu et al., 2013; Ulrici et al., 2013; Serranti et 
Al., 2011).

In this paper, a Near InfraRed (NIR)-based hyperspectral 
imaging (HSI) method to perform real-time identification of 
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different materials occurring in a post-consumer packag-
ing waste stream, such as the polymeric fraction, the cel-
lulose-based fraction and the multi-layers material fraction 
(i.e. laminated plastics and laminated cardboard) resulting 
from a recycling process, is presented. 

The possibility to utilize a cascade classification model 
based on a two-step Partial Least Squares – Discriminant 
Analysis (PLS-DA) to identify cellulose-based fragments 
from polymer/plastic-based fragments, thus recognizing 
laminated plastic from polymer/plastic-based fraction 
and laminated cardboard (i.e. Tetra Brik) from the cellu-
lose-based fraction, is explored (Figure 1).

2. MATERIALS AND METHODS
2.1 Analyzed materials and sampling

The materials were sampled from sorted output result-
ing from a material recovery facility (MRF) of post-consum-
er household plastic packaging waste, located in the Lazio 
region (Italy). Samples were collected from a waste bale 
composed of post-consumer packaging fragments, result-
ing from manual and semi-automatic sorting (oversize of 
a drum sieve separator). Ideally, the output of the sorting 
line should not contain paper-based material. However, the 
quality analysis performed on the 2D output of the facility 
highlighted the presence of paper-based packaging and 
similar material (i.e. laminated card): about 3.5% in weight 
of the analyzed material consists of paper-based packag-
ing fragments. Coning and quartering method was used to 
reduce the sample size to collect. The amount of material 
collected was about 5 kg (i.e. 426 fragments). 81 particles 
were then selected from this pool in order to represent the 
typical fragments usually belonging to this fraction. For cal-
culating the sample size (i.e. number of investigated par-

ticles) was used the simplified Yamane’s (1967) formula:

(1)

where n is the number of sampled particles, N is the total 
number of particles constituting the collected material, and 
e represents the level of precision. A 90% confidence level 
was assumed for this equation. The fragment size ranges 
from 2 to 10 cm.
Paper, cardboard and plastic. In order to build a model able 
to recognize paper-based fragments from polymer-based 
particles, 40 mixed plastic polymer-based and paper-based 
particles were used as a training set (Figure 2): 24 plastic/pol-
ymer-based particles (including laminated plastic) and 16 
paper-based particles (including laminated card and paper).

A total of 30 particles were used as a validation set, 
subclustered in two sets: “Validation set 1” and “Validation 
set 2” (Figure 3). Sixteen particles were included in “Valida-
tion set 1”: 11 plastic/polymer-based particles (including 
laminated plastic) and 5 paper-based particles (including 
laminated card and paper). While 14 particles were includ-
ed in “Validation set 2”: 9 plastic/polymer-based particles 
(including laminated plastic) and 5 paper-based particles 
(including laminated card and paper).
Laminated card. In order to recognize laminated from other 
paper-based particles, 5 paper-based particles to be includ-
ed in the calibration set were additionally analyzed (Figure 4).
Laminated plastic. To set-up a model able to discriminate 
laminated plastic from other polymer-based particles, 6 
laminated plastic fragments were included in the calibra-
tion set (Figure 5).

2.2 HyperSpectral Imaging system and data han-
dling

HyperSpectral Imaging (HSI) is a technique, based on a 
specific sensing architecture, that allows to digitally collect 

FIGURE 1: Decision tree describing the two-stage cascaded classifier applied to a post-consumer packaging waste stream to perform 
product classification.
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FIGURE 5: Digital images of laminated plastic particles. Side A shows the fragments with the plastic/metal side exposed, while side B the 
metal/plastic side.

FIGURE 4: Digital images of laminated card particles. Side A: 5 fragments with the plastic/paper/metal/plastic side exposed and Side B:  
4 fragments with the plastic/metal/paper/plastic side exposed.

the spectrum associated with each pixel of the collected 
image. The acquired information is arranged in a three-di-
mensional (x, y, λ) dataset, called hyperspectral cube or 
“hypercube”.

The hyperspectral device utilized in this study works 
in the NIR range (1000-1700 nm). The sensing unit is con-
stituted by a SpecIm’s NIR spectral camera consisting of 
an ImSpector N17E imaging spectrograph, developed by 
SpecIm™ Oy, with a spectral sampling/pixel of 2.6 nm cou-

pled with a temperature-stabilized InGaAs photodiode ar-
ray (320 × 240 pixels in image frame), positioned above a 
light source (Serranti and Bonifazi, 2010; DV Optics S.r.l., 
2008). The illuminant system consists of a diffused light 
cylinder architecture, embedding five halogen bulbs. The 
equipment, connected to a PC, is mounted on a conveyor 
belt (width = 26 cm and length = 160 cm) that can operate 
at variable speed (variable between 0 mm/s and 50 mm/s). 

The calibration of the spectrograph was performed by 

FIGURE 2: Digital images of particles included in the calibration set to build a model able to recognize paper-based fragments from poly-
mer-based particles.

FIGURE 3: Digital images of particles included into the validation set: “Validation set 1” (a) and “Validation set 2” (b).
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recording an image with the lens of the camera completely 
closed, dark image acquisition (Di), and by measuring the 
“white reference image” (Wi) on a standardized white Spec-
tralon® ceramic material. The dark reference was used to 
remove the effect of the CCD (charge-coupled device) dark 
current. After this calibration stage, the spectra image (R0i

) 
is acquired and the reflectance (Ri) of the acquired image 
is then computed, by using the equation: 

(2)

The calibration procedure was performed via Spectral 
Scanner™ v.2.3 software.

2.2.1 Data acquisition
Hyperspectral image acquisition was carried out set-

ting the speed of the conveyor belt equal to 10 mm/s (for 
1000 frames). The 40 particles utilized to develop a model 
able for discriminating paper-based fragments from poly-
mer-based particles (i.e. training set), were acquired in 6 
hyperspectral images. To set-up the model to discriminate 
laminated card (i.e. Tetra Brik package fragments) from 
other cellulose materials, 5 laminated particles were ac-
quired in 2 hyperspectral images from 2 sides: one image 
showing the plastic/paper/metal/plastic side (Side A) and 
the other image showing the plastic/metal/paper/plastic 
side (Side b) (Figure 4). To set up the model to identify lam-
inated plastic fragments from other polymer-based par-
ticles, 6 laminated plastic fragments were acquired from 

2 sides in 4 hyperspectral images: 2 images with the par-
ticles’ plastic/metal side exposed (Side A) and 2 images 
with particles’ metal/plastic side exposed (Side B) (Figure 
5). The data set to validate the models was constituted by 
16 particles included in “Validation set 1”, scanned in 2 hy-
perspectral images, and 14 particles in “Validation set 2” 
also acquired in 2 hyperspectral images. 

Acquired hyperspectral images “.sif” were converted 
into “.hdr” files and imported into MATLAB® environment 
(MATLAB R2018a ver. 9.4) as dataset objects. Imported 
datasets were thus analyzed using Eigenvector Research’s 
PLS_toolbox (ver. 8.7) and MIA_toolbox (ver. 3.0) in MAT-
LAB® environment.

2.2.2 Data pre-processing and explorative analysis
The spectral range of each acquired hyperspectral im-

age was firstly reduced from 950-1700 nm to 1000-1650 
nm, excluding the noisiest parts of the spectra. Background 
removal was performed for all the hyperspectral images. 
Object silhouettes were cropped, and the background was 
excluded via the PLS_toolbox 'Image_Flatfield' function.

Regions of Interest (ROIs) were selected on the training 
set images and mean raw reflectance spectra were extract-
ed. More in detail, 39 ROIs were selected from the 6 hyper-
spectral images of the “Training set”: 23 ROIs of polymer/
plastic-based particles and 16 ROIs of paper-based parti-
cles (“Paper & cardboard”) as shown in Figure 6. 

Spectra of the 39 ROIs were thus extracted and con-

                                                               

FIGURE 6: “Calibration set”: hyperspectral images (a) and selected ROIs of “Paper & cardboard” and “Polymer” (b). Red: Paper & cardboard, 
green: Polymer.
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catenated to create a unique dataset (for the classes “Pol-
ymer” and “Paper & cardboard”). The model calibration to 
discriminate laminated card (i.e. Tetra Brik package frag-
ments) from other cellulose materials (Figure 7) was car-
ried out by extracting 15 ROIs from 2 acquired hyperspec-
tral images (8 ROIs from side A and 7 ROIs from side B: 
side A is the plastic/paper/metal/plastic side, while side B 
is the plastic/metal/paper/plastic side). Spectra from ex-
tracted ROIs were used to create a new dataset for class 
“Paper & cardboard (laminated card)”.

Figure 8 shows the 4 concatenated hyperspectral im-
ages depicting laminated plastic particles included in the 
calibration set and the extracted 30 ROIs (14 ROIs on side 
A and 16 ROIs on side B: side A is the plastic/metal side, 

while side B is the metal/plastic). Spectra from extracted 
ROIs were used to create a new dataset for class “Poly-
mer (Laminated plastic)”. While the hyperspectral images 
of the “Validation set 1” were only concatenated together, 
as shown in Figure 9. The same procedure was applied to 
“Validation set 2”.

A combination of pre-processing algorithms (Rinnan et 
al., 2009) was applied to spectral data used to train each 
step of the cascading classifier. Data pre-processing is not 
only necessary to implement both scattering corrections 
and noise removal procedures, but also to enhance differ-
ences occurring among clusters of data classes. Different 
pre-processing strategies were sequentially applied. The one 
giving the better response in terms of data decomposition 

FIGURE 7: Laminated card particles (side A is the plastic/paper/metal/plastic side, while side B is the plastic/metal/paper/plastic side): 
a) concatenated hyperspectral images of the particles and b) ROIs selected on the hyperspectral images (Red: laminated card - side A, 
green: laminated card - side B).

FIGURE 8: Laminated plastic particles (side A is the plastic/metal side, while side B is the metal/plastic): a) concatenated hyperspectral 
images of the particles and b) ROIs selected on the hyperspectral images (Red: laminated plastic - side A, green: laminated plastic - side B).
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was thus chosen, that is: Standard Normal Variate (SNV), 
Smoothing and Mean Center (MC) (Savitzky and Golay, 1964; 
Rinnan et al., 2009; Eigenvector, 2017; Eigenvector, 2018).

SNV consists of a scatter-corrective pre-processing 
method and it is one of the most widely used pre-process-
ing techniques in NIR spectroscopy (Rinnan et al., 2009; 
Eigenvector, 2017). The smoothing algorithm is a low-pass 
filter used to remove high-frequency noise from samples. 
This pre-processing, based on the Savitzky-Golay algo-
rithm, (Savitzky and Golay, 1964) is often used on spectra. 
Smoothing operates separately on each row of the spec-
tra matrix acting on adjacent variables. Adjacent varia-
bles, containing similar information, are averaged together 
without significant loss of the spectral information. Finally, 
MC pre-process algorithm centers columns to have a zero 
mean (Eigenvector, 2018).

Principal Component Analysis (PCA), a well-known un-
supervised pattern recognition technique, was chosen to 
perform the exploratory analysis of decomposed spectral 
data, according to sample type and for excluding outliers 
from the datasets (Wold et al. 1987; Rivsik, 2007; Wise et 
al., 2008).

2.3 Cascade Model based on Partial Least Squares 
– Discriminant Analysis (PLS-DA)

A two-step cascade model based on Partial Least 
Squares-Discriminant Analysis (PLS-DA) (Figure 1) was 
built and validated. PLS-DA is a supervised pattern recog-
nition technique consisting of a multivariate inverse least 
squares discrimination method. Partial Least Squares 
(PLS) regression is used to develop a model able to predict 
the class of each sample (i.e. pixel) under study (Wise et 
al., 2008). 

The first step of the cascade classification model was 
performed to identify cellulose-based fragments (“Pa-
per & cardboard”) from polymer/plastic-based fragments 
(“Polymer”). The second step of the classification was 
performed in order to discriminate Laminated card (“Pa-
per & cardboard (Laminated card)”) from the other cellu-
lose-based particles (“Paper & cardboard 2”) and to identify 
laminated plastic fragments (“Polymer (Laminated plas-
tic)”) from other polymer-based fragments (“Polymer 2”). 
The first model was calibrated with the classes “Paper & 
cardboard” and “Polymer” by using the spectra extracted 

from ROIs selected on the calibration set (Figures 10a and 
10b). Venetian-blinds, as a cross-validation method, were 
utilized to perform model tuning and to choose “the right 
grade of complexity“ (Eigenvector, 2016): 3 Latent Varia-
bles (LVs) were used. The model was validated on “Vali-
dation set 1” and “Validation set 2”, to assess the ability of 
new “unknown” sample prediction. 

The second step of the cascading model was calibrat-
ed using:

i) the “Paper & cardboard (Laminated card)” belonging to 
the selected ROIs, as shown in Figures 10c and 10d, 
to perform the discrimination between “Paper & card-
board (Laminated card)” and “Paper & cardboard 2” and 

ii) the “Polymer (Laminated plastic)” belonging to the se-
lected ROIs, as shown in Figures 10c and 10d, to per-
form the discrimination between “Polymer (Laminated 
plastic)” and “Polymer 2”.

In the first case, 5 LVs were used. The model was vali-
dated on “Validation set 1” and “Validation set 2”, with the 
polymer-based particles removed from the analysis. In 
the second case, 5 Latent variables (LVs) were used. The 
model was validated on “Validation set 1” and “Validation 
set 2”, with the cellulose-based particles removed from the 
analysis.

The confusion matrix, adopting a pixels-based logic, 
was considered to evaluate classifier performance in each 
of its steps and the commonly used performance metrics 
calculated from it. Sensitivity, Specificity, Precision, Accu-
racy, Misclassification Error and Class Error were calcu-
lated from the confusion matrix (Ballabio and Todeschini, 
2009; Fawcett, 2006), which are:

(3)

(4)

   (5)

      (6)

      (7)

      (8)

where: TP (True Positive) is a positive instance that is clas-
sified as positive; FN (False Negative) is a positive instance 

FIGURE 9: Hyperspectral images of “Validation set 1” (a) and “Validation set 2” (b).
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that is classified as negative; TN (True Negative) is a nega-
tive instance that is a classified as negative and FP (False 
Positive) is a negative instance that is classified as positive.

While, in an object-based logic, considering 50% of the 
pixels in each object as discriminating threshold, the over-
all performance of the cascade model was computed in 
terms of Recognition (i.e. Accuracy), Error and Reliability 
rates, according to Eq. 9, Eq. 10 and Eq. 11 (Silva et Al. 
2017).

     (9)

(10)

  (11)

being N the total number of samples, while NCor and NMis 

are the total of well-recognized and misrecognized sam-
ples, respectively.

3. RESULTS AND DISCUSSION
3.1 Cascade classification model
3.1.1 “Paper & cardboard” - “Polymer” model

“Paper & cardboard” - “Polymer” Classification model 
performance details for Calibration, Cross-validation and 
Validation phases are reported in Table 1. As can be seen 
in Figure 11, the validated model was able to recognize all 
the particles in “Validation set 1” and 13 out of 14 particles 
in “Validation set 2” (93% of the total in the set: a “Polymer” 
plastic (i.e. a laminated plastic fragment circled in blue) was 
misclassified for over 50% of pixels as “Paper & cardboard”.

FIGURE 10: “Paper & cardboard” - “Polymer” calibration set: grand-average of raw reflectance spectra (a) and pre-processed spectra 
(b). “Paper & cardboard 2” and “Paper & cardboard (Laminated card)” calibration set: grand-average of raw reflectance spectra (c) and 
pre-processed spectra (d). “Polymer 2” and “Polymer (Laminated plastic)”: grand-average of raw reflectance spectra (e) and pre-processed 
spectra (f).



101G. Bonifazi et al. / DETRITUS / Volume 15 - 2021 / pages 94-106

3.1.2 “Paper & cardboard 2” - “Paper & cardboard (Laminat-
ed card)” model

 “Paper & cardboard 2” - “Paper & cardboard (Laminat-
ed card)” achieved good classification model performance 
as reported in Table 2. As can be seen in Figure 12, the 
validated model was able to recognize all the particles in 
“Validation set 1” and in “Validation set 2”.

3.1.3 “Polymer 2” - “Polymer (Laminated plastic)” model
 “Polymer 2” - “Polymer (Laminated plastic)” classifica-

tion model performance details for calibration, cross-vali-
dation and validation phases are reported in Table 3. The 
validated model was able to recognize 10/11 particles in 
“Validation set 1” (91% of the total in the set, as can be 

seen in Figure 13): a “Polymer (Laminated plastic)” frag-
ment (i.e. a laminated plastic fragment circled in blue, as 
seen in Figure 13), was misclassified for over 50% of pixels 
as “Polymer 2” class. However, the model can predict all 
particle class labels in “Validation set 2”.

3.1.4 Overall performances of the cascade identification 
process

The “Paper & cardboard” - “Polymer” classification 
model can discriminate 29 out of 30 particles (97% total 
particles of the two validation sets), reaching a Recognition 
and a Reliability of 0.967. In the second step of the cascade 
classification, the “Paper & cardboard 2” - “Paper & card-
board (Laminated card)” model is able to discriminate all 

  Class Sensitivity Specificity Misclassification 
Error Precision Accuracy Class Error

Calibration 
Paper & cardboard 1.000 0.970 0.021 0.938 0.980 0.015

Polymer 0.970 1.000 0.021 1.000 0.980 0.015

Cross-validation 
Paper & cardboard 1.000 0.970 0.021 0.938 0.980 0.015

Polymer 0.970 1.000 0.021 1.000 0.980 0.015

Validation set 1
Paper & cardboard 0.952 0.993 0.020 0.985 0.980 0.028

Polymer 0.993 0.952 0.020 0.978 0.980 0.028

Validation set 2
Paper & cardboard 0.958 0.896 0.083 0.829 0.917 0.073

Polymer 0.896 0.958 0.083 0.976 0.917 0.073

TABLE 1: “Paper & cardboard” - “Polymer” classification model details for Calibration, Cross-validation and Validation phases: Sensitivity, 
Specificity, Misclassification Error, Precision, accuracy and Class Error.

FIGURE 11: The validation set 1 and set 2 - “Paper & cardboard” and “Polymer” classification: actual classes (a) and classes predicted by 
the PLS-DA model. By comparing the actual classes to the prediction map, it can be seen that all the fragments were correctly classified 
by the two-class PLS-DA model in “Validation set 1”. While, In “validation set 2”, a comparison between the actual classes and the PLS-DA 
prediction map highlights the misclassification of a particle (circled in blue), a laminated plastic fragment, predicted for more than 50% of 
the pixels as “Paper & cardboard”.
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the particles included into the two validation sets (10 out of 
10), thus reaching a Recognition and a Reliability of 1. While 
“Polymer 2” - “Polymer (Laminated plastic)” model is able 
to correctly classify 19 out of 20 of the particles included 
in the validation sets, reaching a Recognition and a Relia-
bility of 0.950. The misclassified fragments are laminated 
plastics, this misclassification is due to their high reflec-
tion related to the exposed surfaces wrinkling of the bent 
packaging fragments and linked to scattering phenomena. 

Following a pixel-based logic, the most reflective zones 
and shadow zones of the bent fragments are sometimes mis-
classified. To sum up, the cascade model, by having misclas-
sified 2 out of 30 particles in total, reached in prediction a Rec-
ognition and a Reliability of 0.933, with an Error equal to 0.066.

4. CONCLUSIONS
A PLS-DA-based cascading classification model able to 

recognize polymeric fragments from cellulosic ones and to 
identify multi-layer materials (i.e. laminated plastic and lam-

inated cardboard) was built and validated. In the first step of 
the cascade classification model, finalized to discriminate 
cellulose-based from polymer/plastic-based fragments 29 
out of 30 objects were recognized. In the second step, the 
laminated card and other cellulose-based particles were 
all correctly recognized and only one fragment of laminat-
ed plastic was misclassified performing discrimination 
of laminated plastic fragments from other polymer/plas-
tic-based fragments. The set up cascade model reached 
in prediction an overall Recognition and Reliability of 0.933.

 A NIR-HSI-based approach can represent an optimal, 
reliable and low-cost answer to systematically identify 
impurities and composite materials inside plastic waste 
streams. The proposed approach, if fully implemented, can 
be utilized as a control strategy for continuous monitoring 
or as an analytical core for sorting materials in post-con-
sumer plastic packaging waste characterized by the pres-
ence of paper, cardboard and multilayer packaging.

Results showed as the application of hyperspectral im-
aging, in the near-infrared range (1000–1700 nm), applied 

  Class Sensitivity Specificity Misclassification 
Error Precision Accuracy Class Error

Calibration 

Paper & 
cardboard 2 0.882 0.937 0.099 0.965 0.901 0.090

Paper & cardboard 
(Laminated card) 0.937 0.882 0.099 0.804 0.901 0.090

Cross-validation 

Paper & 
cardboard 2 0.881 0.937 0.100 0.965 0.901 0.091

Paper & cardboard 
(Laminated card) 0.937 0.881 0.100 0.804 0.901 0.091

Validation set 1

Paper & 
cardboard 2 0.983 0.887 0.031 0.982 0.969 0.065

Paper & cardboard 
(Laminated card) 0.887 0.983 0.031 0.894 0.969 0.065

Validation set 2

Paper & 
cardboard 2 0.997 0.954 0.009 0.992 0.991 0.024

Paper & cardboard 
(Laminated card) 0.954 0.997 0.009 0.983 0.991 0.024

TABLE 2: “Paper & cardboard 2” - “Paper & cardboard (Laminated card)” classification model details for Calibration, Cross-validation and 
Validation phases: Sensitivity, Specificity, Misclassification Error, Precision, accuracy and Class Error.

FIGURE 11: The validation set 1 and set 2 - “Paper & cardboard 2” - “Paper & cardboard (Laminated card)” classification: actual classes (a) 
and classes predicted by the PLS-DA model. Fragments were correctly classified by the two-class PLS-DA model as comparing the actual 
classes to the prediction map.
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  Class Sensitivity Specificity Misclassification 
Error Precision Accuracy Class Error

Calibration 
Polymer 2 0.930 0.839 0.107 0.894 0.893 0.116

Polymer 
(Laminated plastic) 0.839 0.930 0.107 0.891 0.893 0.116

Cross-validation 
Polymer 2 0.930 0.839 0.107 0.894 0.893 0.116

Polymer 
(Laminated plastic) 0.839 0.930 0.107 0.891 0.893 0.116

Validation set 1
Polymer 2 1.000 0.304 0.130 0.863 0.870 0.348

Polymer 
(Laminated plastic) 0.304 1.000 0.130 0.998 0.870 0.348

Validation set 2
Polymer 2 0.990 0.621 0.093 0.900 0.907 0.194

Polymer 
(Laminated plastic) 0.621 0.990 0.093 0.948 0.907 0.194

TABLE 3: The “Polymer 2” - “Polymer (Laminated plastic)” classification model details for Calibration, Cross-validation and Validation 
phases: Sensitivity, Specificity, Misclassification Error, Precision, accuracy and Class Error.

FIGURE 13: The validation set 1 and set 2 - “Polymer 2” - “Polymer (Laminated plastic)” classification: actual classes (a) and classes 
predicted by the PLS-DA model. In Validation set 1, a comparison between the actual classes and the PLS-DA prediction map highlights 
the misclassification of a particle (circled in blue), a laminated plastic fragment, predicted for more than 50% of the pixels as “Polymer 2”. 
While in Validation set 2, all the fragments were correctly classified by the two-class PLS-DA model; however, some pixels are misclassi-
fied.

on a packaging waste stream, opens the door to future in-
novations in the field of resources and recycling, that is the 
possibility to develop sensing architectures to recognize 
plastic and/or 2D pollutants (i.e paper-based packaging 
and laminated card fragments), in order to be used not only 
as a sorting engine but also as an analytical core to per-
form quality control on products and/or byproducts com-
ing from different manufacturing stages.
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APPENDIX
The detailed information regarding the sample sets selected to perform model calibration and validation are reported 

in Figure A1. Each fragment is labeled and their characteristics, for the different sets, are reported in Table A1.

FIGURE A1: Reference image of the sample sets. For each fragment is reported the sample identification label.
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Sample set Sample ID Fragment/sample definition Sample class Lamination

Calibration set  
(Paper, cardboard 
and plastic)

C1 Transparent plastic cup Plastic

C2 White plastic cup Plastic

C3 Laminated plastic potato chip bag Plastic Laminated plastic

C4 Pizza cardboard carton Paper and cardboard

C5 Transparent plastic film Plastic

C6 Plastic bag Plastic

C7 Plastic peanut bag Plastic

C8 Tetra Brik juice carton Paper and cardboard Laminated cardboard

C9 Laminated paper envelope Paper and cardboard Laminated card

C10 Plastic peanut bag Plastic

C11 Cardboard carton Paper and cardboard

C12 Plastic bag Plastic

C13 Paper Paper and cardboard

C14 Tetra Brik juice carton Paper and cardboard Laminated cardboard

C15 Transparent plastic bottle Plastic

C16 Plastic bottle label Plastic

C17 Laminated plastic potato chip bag Plastic Laminated plastic

C18 White plastic cup Plastic

C19 Transparent plastic cup Plastic

C20 Cardboard carton Paper and cardboard

C21 Transparent plastic film Plastic

C22 Plastic peanut bag Plastic Laminated plastic

C23 Plastic bag Plastic

C24 Tetra Brik juice carton Paper and cardboard Laminated cardboard

C25 Laminated paper envelope Paper and cardboard Laminated card

C26 Plastic peanuts bag Plastic

C27 Cardboard carton Paper and cardboard

C28 Plastic bag Plastic

C29 Tetra Brik juice carton Paper and cardboard

C30 Paper Paper and cardboard

C31 Transparent plastic bottle Plastic

C32 Plastic bottle label Plastic

C33 Plastic bottle label Plastic

C34 Laminated paper - plastic envelope Paper and cardboard Laminated card

C35 Plastic bag Plastic

C36 Plastic bottle label Plastic

C37 Paper box Paper and cardboard

C38 Tetra Brik juice carton Paper and cardboard Laminated cardboard

C39 Plastic straw Plastic

C40 Cardboard carton Paper and cardboard

Calibration set  
(Laminated card)

CX1 Tetra Brik juice carton Paper and cardboard Laminated cardboard

CX2 Tetra Brik juice carton Paper and cardboard Laminated cardboard

CX3 Tetra Brik juice carton Paper and cardboard Laminated cardboard

CX4 Tetra Brik juice carton Paper and cardboard Laminated cardboard

CX5 Tetra Brik juice carton Paper and cardboard Laminated cardboard

TABLE A1: Characteristics of the sample sets used in this study.
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Calibration set  
(Laminated 
plastic)

CX6 Laminated plastic potato chip bag Plastic Laminated plastic

CX7 Laminated plastic snack bag Plastic Laminated plastic

CX8 Laminated plastic potato chip bag Plastic Laminated plastic

CX9 Laminated plastic ketchup sachet Plastic Laminated plastic

CX10 Laminated plastic snack bag Plastic Laminated plastic

CX11 Laminated plastic snack bag Plastic Laminated plastic

Validation set 1 V1 Sausage plastic bag Plastic

V2 Laminated plastic ketchup sachet Plastic Laminated plastic

V3 Transparent plastic film Plastic

V4 Tetra Brik juice carton Paper and cardboard Laminated cardboard

V5 Plastic bottle label Plastic

V6 Plastic bag Plastic

V7 Cardboard carton Paper and cardboard

V8 Paper Paper and cardboard

V9 Transparent plastic film Plastic

V10 Transparent plastic bag Plastic

V11 Cardboard carton Paper and cardboard

V12 Tetra Brik juice carton Paper and cardboard Laminated cardboard

V13 Plastic straw Plastic

V14 Laminated plastic potato chip bag Plastic Laminated plastic

V15 Plastic plate Plastic

V16 Plastic bag Plastic

Validation set 2 V17 Sausage plastic bag Plastic

V18 Plastic bag Plastic

V19 Laminated plastic ketchup sachet Plastic Laminated plastic

V20 Plastic bottle label Plastic

V21 Cardboard carton Paper and cardboard

V22 Paper Paper and cardboard

V23 Transparent plastic bag Plastic

V24 Cardboard carton Paper and cardboard

V25 Plastic straw Plastic

V26 Tetra Brik juice carton Paper and cardboard Laminated cardboard

V27 Plastic plate Plastic

V28 Laminated plastic potato chip bag Plastic Laminated plastic

V29 Tetra Brik juice carton Paper and cardboard Laminated cardboard

V30 Transparent plastic film Plastic


